Spaces:
Sleeping
Sleeping
Update webUI/natural_language_guided_4/README.py
Browse files
webUI/natural_language_guided_4/README.py
CHANGED
@@ -1,53 +1,41 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
readme_content = """##
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
[2] AUTOMATIC1111. (2022). Stable Diffusion Web UI [Computer software]. Retrieved from https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
42 |
-
|
43 |
-
[3] Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., & Norouzi, M. (2017). Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders.
|
44 |
-
|
45 |
-
[4] Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.
|
46 |
-
"""
|
47 |
-
|
48 |
-
def get_readme_module():
|
49 |
-
|
50 |
-
with gr.Tab("README"):
|
51 |
-
# gr.Markdown("Use interpolation to generate a gradient sound sequence.")
|
52 |
-
with gr.Column(scale=3):
|
53 |
readme_textbox = gr.Textbox(label="readme", lines=40, value=readme_content, interactive=False)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
readme_content = """## Assisting Musicians with Generation of Musical Notes using a Text-Guided Diffusion Model
|
4 |
+
|
5 |
+
|
6 |
+
### Training Data:
|
7 |
+
The neural network is trained on the filtered NSynth dataset [3], which comes with the following labels:
|
8 |
+
|
9 |
+
Instrument Families: bass, brass, flute, guitar, keyboard, mallet, organ, reed, string, synth lead, vocal.
|
10 |
+
Instrument Sources: acoustic, electronic, synthetic.
|
11 |
+
Note Qualities: bright, dark, distortion, fast decay, long release, multiphonic, nonlinear env, percussive, reverb, tempo-synced.
|
12 |
+
|
13 |
+
YOU ARE NOT LIMITED TO THE ABOVE TERMS; THE MODEL CAN UNDERSTAND A WIDE RANGE OF VOCABULARY AND ACCEPTS NATURAL LANGUAGE INPUT!
|
14 |
+
|
15 |
+
### Usage Hints:
|
16 |
+
|
17 |
+
1. **Unique Sounds**: Start generating your unique sound in Text2Sound!
|
18 |
+
|
19 |
+
2. **Sample Indexing**: Drag the "Sample index slider" to view other samples within the generated batch.
|
20 |
+
|
21 |
+
3. **Editing Sounds**: Generated audio can be downloaded and re-uploaded for further editing in the Sound2Sound/Inpaint sections. YOU CAN ALSO UPLOAD OR RECORD AUDIO FROM OTHER SOURCES.
|
22 |
+
|
23 |
+
4. **Arrangement** Once you have achieved a satisfactory timbre in the Text2Sound, Sound2Sound, or Inpaint module, you can name and save it in the bottom-right corner. Then, you can upload your MIDI file in the Arrangement module, assign the saved timbre to each track, and start playing!
|
24 |
+
|
25 |
+
References:
|
26 |
+
|
27 |
+
[1] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10684-10695).
|
28 |
+
|
29 |
+
[2] AUTOMATIC1111. (2022). Stable Diffusion Web UI [Computer software]. Retrieved from https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
30 |
+
|
31 |
+
[3] Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., & Norouzi, M. (2017). Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders.
|
32 |
+
|
33 |
+
[4] Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def get_readme_module():
|
37 |
+
|
38 |
+
with gr.Tab("README"):
|
39 |
+
# gr.Markdown("Use interpolation to generate a gradient sound sequence.")
|
40 |
+
with gr.Column(scale=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
readme_textbox = gr.Textbox(label="readme", lines=40, value=readme_content, interactive=False)
|