SlouchyBuffalo commited on
Commit
688c84e
·
verified ·
1 Parent(s): 8117772

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +220 -0
app.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
3
+ from diffusers.utils import export_to_video
4
+ from transformers import CLIPVisionModel
5
+ import gradio as gr
6
+ import tempfile
7
+ import spaces
8
+ from huggingface_hub import hf_hub_download
9
+ import numpy as np
10
+ from PIL import Image
11
+ import random
12
+
13
+ MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
14
+ LORA_REPO_ID = "Kijai/WanVideo_comfy"
15
+ LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
16
+
17
+ image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
18
+ vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
19
+ pipe = WanImageToVideoPipeline.from_pretrained(
20
+ MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
21
+ )
22
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
23
+ pipe.to("cuda")
24
+
25
+ causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
26
+ pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
27
+ pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
28
+ pipe.fuse_lora()
29
+
30
+ MOD_VALUE = 32
31
+ DEFAULT_H_SLIDER_VALUE = 640
32
+ DEFAULT_W_SLIDER_VALUE = 1024
33
+ NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
34
+
35
+ SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
36
+ SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
37
+ MAX_SEED = np.iinfo(np.int32).max
38
+
39
+ FIXED_FPS = 24
40
+ MIN_FRAMES_MODEL = 8
41
+ MAX_FRAMES_MODEL = 81
42
+
43
+ default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
44
+ default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
45
+
46
+
47
+ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
48
+ min_slider_h, max_slider_h,
49
+ min_slider_w, max_slider_w,
50
+ default_h, default_w):
51
+ orig_w, orig_h = pil_image.size
52
+ if orig_w <= 0 or orig_h <= 0:
53
+ return default_h, default_w
54
+
55
+ aspect_ratio = orig_h / orig_w
56
+
57
+ calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
58
+ calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
59
+
60
+ calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
61
+ calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
62
+
63
+ new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
64
+ new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
65
+
66
+ return new_h, new_w
67
+
68
+ def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
69
+ if uploaded_pil_image is None:
70
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
71
+ try:
72
+ new_h, new_w = _calculate_new_dimensions_wan(
73
+ uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
74
+ SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
75
+ DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
76
+ )
77
+ return gr.update(value=new_h), gr.update(value=new_w)
78
+ except Exception as e:
79
+ gr.Warning("Error attempting to calculate new dimensions")
80
+ return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
81
+
82
+ def calculate_optimal_frames(duration_seconds, fps=FIXED_FPS, min_frames=MIN_FRAMES_MODEL, max_frames=MAX_FRAMES_MODEL):
83
+ """Calculate optimal frame count ensuring num_frames-1 is divisible by 4"""
84
+ raw_frames = int(round(duration_seconds * fps))
85
+ raw_frames = np.clip(raw_frames, min_frames, max_frames)
86
+
87
+ # Ensure num_frames - 1 is divisible by 4
88
+ optimal_frames = ((raw_frames - 1) // 4) * 4 + 1
89
+
90
+ # Double check bounds after adjustment
91
+ optimal_frames = np.clip(optimal_frames, min_frames, max_frames)
92
+
93
+ return optimal_frames
94
+
95
+ def get_duration(input_image, prompt, height, width,
96
+ negative_prompt, duration_seconds,
97
+ guidance_scale, steps,
98
+ seed, randomize_seed,
99
+ progress):
100
+ if steps > 4 and duration_seconds > 2:
101
+ return 90
102
+ elif steps > 4 or duration_seconds > 2:
103
+ return 75
104
+ else:
105
+ return 60
106
+
107
+ @spaces.GPU(duration=get_duration)
108
+ def generate_video(input_image, prompt, height, width,
109
+ negative_prompt=default_negative_prompt, duration_seconds = 2,
110
+ guidance_scale = 1, steps = 4,
111
+ seed = 42, randomize_seed = False,
112
+ progress=gr.Progress(track_tqdm=True)):
113
+
114
+ try:
115
+ if input_image is None:
116
+ raise gr.Error("Please upload an input image.")
117
+
118
+ target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
119
+ target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
120
+
121
+ # Use improved frame calculation
122
+ num_frames = calculate_optimal_frames(duration_seconds)
123
+
124
+ current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
125
+
126
+ resized_image = input_image.resize((target_w, target_h))
127
+
128
+ with torch.inference_mode():
129
+ output_frames_list = pipe(
130
+ image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
131
+ height=target_h, width=target_w, num_frames=num_frames,
132
+ guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
133
+ generator=torch.Generator(device="cuda").manual_seed(current_seed)
134
+ ).frames[0]
135
+
136
+ with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
137
+ video_path = tmpfile.name
138
+
139
+ # Use imageio backend explicitly if available
140
+ try:
141
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS, backend="imageio")
142
+ except:
143
+ # Fallback to default backend
144
+ export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
145
+
146
+ # Clean up GPU memory
147
+ torch.cuda.empty_cache()
148
+
149
+ return video_path, current_seed
150
+
151
+ except Exception as e:
152
+ # Clean up GPU memory on error too
153
+ torch.cuda.empty_cache()
154
+ raise gr.Error(f"Video generation failed: {str(e)}")
155
+
156
+ with gr.Blocks(title="Wan 2.1 I2V with CausVid LoRA") as demo:
157
+ gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
158
+ gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
159
+
160
+ with gr.Row():
161
+ with gr.Column():
162
+ input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
163
+ prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
164
+ duration_seconds_input = gr.Slider(
165
+ minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
166
+ maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
167
+ step=0.1,
168
+ value=2,
169
+ label="Duration (seconds)",
170
+ info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Frame count auto-optimized for best quality."
171
+ )
172
+
173
+ with gr.Accordion("Advanced Settings", open=False):
174
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
175
+ seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
176
+ randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
177
+ with gr.Row():
178
+ height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
179
+ width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
180
+ steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
181
+ guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
182
+
183
+ generate_button = gr.Button("Generate Video", variant="primary")
184
+
185
+ with gr.Column():
186
+ video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
187
+
188
+ input_image_component.upload(
189
+ fn=handle_image_upload_for_dims_wan,
190
+ inputs=[input_image_component, height_input, width_input],
191
+ outputs=[height_input, width_input]
192
+ )
193
+
194
+ input_image_component.clear(
195
+ fn=handle_image_upload_for_dims_wan,
196
+ inputs=[input_image_component, height_input, width_input],
197
+ outputs=[height_input, width_input]
198
+ )
199
+
200
+ ui_inputs = [
201
+ input_image_component, prompt_input, height_input, width_input,
202
+ negative_prompt_input, duration_seconds_input,
203
+ guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
204
+ ]
205
+ generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
206
+
207
+ # Note: Make sure these example images exist in your space
208
+ gr.Examples(
209
+ examples=[
210
+ ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
211
+ ["forg.jpg", "the frog jumps around", 448, 832],
212
+ ],
213
+ inputs=[input_image_component, prompt_input, height_input, width_input],
214
+ outputs=[video_output, seed_input],
215
+ fn=generate_video,
216
+ cache_examples="lazy"
217
+ )
218
+
219
+ if __name__ == "__main__":
220
+ demo.queue().launch()