Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
|
3 |
+
from diffusers.utils import export_to_video
|
4 |
+
from transformers import CLIPVisionModel
|
5 |
+
import gradio as gr
|
6 |
+
import tempfile
|
7 |
+
import spaces
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import random
|
12 |
+
|
13 |
+
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
|
14 |
+
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
15 |
+
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
16 |
+
|
17 |
+
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
|
18 |
+
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
19 |
+
pipe = WanImageToVideoPipeline.from_pretrained(
|
20 |
+
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
|
21 |
+
)
|
22 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
|
23 |
+
pipe.to("cuda")
|
24 |
+
|
25 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
26 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
27 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
28 |
+
pipe.fuse_lora()
|
29 |
+
|
30 |
+
MOD_VALUE = 32
|
31 |
+
DEFAULT_H_SLIDER_VALUE = 640
|
32 |
+
DEFAULT_W_SLIDER_VALUE = 1024
|
33 |
+
NEW_FORMULA_MAX_AREA = 640.0 * 1024.0
|
34 |
+
|
35 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
|
36 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
|
37 |
+
MAX_SEED = np.iinfo(np.int32).max
|
38 |
+
|
39 |
+
FIXED_FPS = 24
|
40 |
+
MIN_FRAMES_MODEL = 8
|
41 |
+
MAX_FRAMES_MODEL = 81
|
42 |
+
|
43 |
+
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
44 |
+
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
|
45 |
+
|
46 |
+
|
47 |
+
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
48 |
+
min_slider_h, max_slider_h,
|
49 |
+
min_slider_w, max_slider_w,
|
50 |
+
default_h, default_w):
|
51 |
+
orig_w, orig_h = pil_image.size
|
52 |
+
if orig_w <= 0 or orig_h <= 0:
|
53 |
+
return default_h, default_w
|
54 |
+
|
55 |
+
aspect_ratio = orig_h / orig_w
|
56 |
+
|
57 |
+
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
|
58 |
+
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
|
59 |
+
|
60 |
+
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
|
61 |
+
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
|
62 |
+
|
63 |
+
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
|
64 |
+
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
|
65 |
+
|
66 |
+
return new_h, new_w
|
67 |
+
|
68 |
+
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
|
69 |
+
if uploaded_pil_image is None:
|
70 |
+
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
71 |
+
try:
|
72 |
+
new_h, new_w = _calculate_new_dimensions_wan(
|
73 |
+
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
|
74 |
+
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
|
75 |
+
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
|
76 |
+
)
|
77 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
78 |
+
except Exception as e:
|
79 |
+
gr.Warning("Error attempting to calculate new dimensions")
|
80 |
+
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
81 |
+
|
82 |
+
def calculate_optimal_frames(duration_seconds, fps=FIXED_FPS, min_frames=MIN_FRAMES_MODEL, max_frames=MAX_FRAMES_MODEL):
|
83 |
+
"""Calculate optimal frame count ensuring num_frames-1 is divisible by 4"""
|
84 |
+
raw_frames = int(round(duration_seconds * fps))
|
85 |
+
raw_frames = np.clip(raw_frames, min_frames, max_frames)
|
86 |
+
|
87 |
+
# Ensure num_frames - 1 is divisible by 4
|
88 |
+
optimal_frames = ((raw_frames - 1) // 4) * 4 + 1
|
89 |
+
|
90 |
+
# Double check bounds after adjustment
|
91 |
+
optimal_frames = np.clip(optimal_frames, min_frames, max_frames)
|
92 |
+
|
93 |
+
return optimal_frames
|
94 |
+
|
95 |
+
def get_duration(input_image, prompt, height, width,
|
96 |
+
negative_prompt, duration_seconds,
|
97 |
+
guidance_scale, steps,
|
98 |
+
seed, randomize_seed,
|
99 |
+
progress):
|
100 |
+
if steps > 4 and duration_seconds > 2:
|
101 |
+
return 90
|
102 |
+
elif steps > 4 or duration_seconds > 2:
|
103 |
+
return 75
|
104 |
+
else:
|
105 |
+
return 60
|
106 |
+
|
107 |
+
@spaces.GPU(duration=get_duration)
|
108 |
+
def generate_video(input_image, prompt, height, width,
|
109 |
+
negative_prompt=default_negative_prompt, duration_seconds = 2,
|
110 |
+
guidance_scale = 1, steps = 4,
|
111 |
+
seed = 42, randomize_seed = False,
|
112 |
+
progress=gr.Progress(track_tqdm=True)):
|
113 |
+
|
114 |
+
try:
|
115 |
+
if input_image is None:
|
116 |
+
raise gr.Error("Please upload an input image.")
|
117 |
+
|
118 |
+
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
119 |
+
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
120 |
+
|
121 |
+
# Use improved frame calculation
|
122 |
+
num_frames = calculate_optimal_frames(duration_seconds)
|
123 |
+
|
124 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
125 |
+
|
126 |
+
resized_image = input_image.resize((target_w, target_h))
|
127 |
+
|
128 |
+
with torch.inference_mode():
|
129 |
+
output_frames_list = pipe(
|
130 |
+
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
|
131 |
+
height=target_h, width=target_w, num_frames=num_frames,
|
132 |
+
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
|
133 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
134 |
+
).frames[0]
|
135 |
+
|
136 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
137 |
+
video_path = tmpfile.name
|
138 |
+
|
139 |
+
# Use imageio backend explicitly if available
|
140 |
+
try:
|
141 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS, backend="imageio")
|
142 |
+
except:
|
143 |
+
# Fallback to default backend
|
144 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
145 |
+
|
146 |
+
# Clean up GPU memory
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
|
149 |
+
return video_path, current_seed
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
# Clean up GPU memory on error too
|
153 |
+
torch.cuda.empty_cache()
|
154 |
+
raise gr.Error(f"Video generation failed: {str(e)}")
|
155 |
+
|
156 |
+
with gr.Blocks(title="Wan 2.1 I2V with CausVid LoRA") as demo:
|
157 |
+
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
|
158 |
+
gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
|
163 |
+
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
164 |
+
duration_seconds_input = gr.Slider(
|
165 |
+
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
|
166 |
+
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
|
167 |
+
step=0.1,
|
168 |
+
value=2,
|
169 |
+
label="Duration (seconds)",
|
170 |
+
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Frame count auto-optimized for best quality."
|
171 |
+
)
|
172 |
+
|
173 |
+
with gr.Accordion("Advanced Settings", open=False):
|
174 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
175 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
176 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
177 |
+
with gr.Row():
|
178 |
+
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
179 |
+
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
180 |
+
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
|
181 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
182 |
+
|
183 |
+
generate_button = gr.Button("Generate Video", variant="primary")
|
184 |
+
|
185 |
+
with gr.Column():
|
186 |
+
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
|
187 |
+
|
188 |
+
input_image_component.upload(
|
189 |
+
fn=handle_image_upload_for_dims_wan,
|
190 |
+
inputs=[input_image_component, height_input, width_input],
|
191 |
+
outputs=[height_input, width_input]
|
192 |
+
)
|
193 |
+
|
194 |
+
input_image_component.clear(
|
195 |
+
fn=handle_image_upload_for_dims_wan,
|
196 |
+
inputs=[input_image_component, height_input, width_input],
|
197 |
+
outputs=[height_input, width_input]
|
198 |
+
)
|
199 |
+
|
200 |
+
ui_inputs = [
|
201 |
+
input_image_component, prompt_input, height_input, width_input,
|
202 |
+
negative_prompt_input, duration_seconds_input,
|
203 |
+
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
|
204 |
+
]
|
205 |
+
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
206 |
+
|
207 |
+
# Note: Make sure these example images exist in your space
|
208 |
+
gr.Examples(
|
209 |
+
examples=[
|
210 |
+
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
|
211 |
+
["forg.jpg", "the frog jumps around", 448, 832],
|
212 |
+
],
|
213 |
+
inputs=[input_image_component, prompt_input, height_input, width_input],
|
214 |
+
outputs=[video_output, seed_input],
|
215 |
+
fn=generate_video,
|
216 |
+
cache_examples="lazy"
|
217 |
+
)
|
218 |
+
|
219 |
+
if __name__ == "__main__":
|
220 |
+
demo.queue().launch()
|