import os import gradio as gr from scepter.modules.utils.file_system import FS from huggingface_hub import hf_hub_download, snapshot_download def resolve_hf_path(path): if isinstance(path, str) and path.startswith("hf://"): parts = path[len("hf://"):].split("@") if len(parts) == 1: repo_id = parts[0] filename = None elif len(parts) == 2: repo_id, filename = parts else: raise ValueError(f"Invalid HF URI format: {path}") token = os.environ.get("HUGGINGFACE_HUB_TOKEN") if token is None: raise ValueError("HUGGINGFACE_HUB_TOKEN environment variable not set!") # If filename is provided, download that file; otherwise, download the whole repo snapshot. local_path = hf_hub_download(repo_id=repo_id, filename=filename, token=token) if filename else snapshot_download(repo_id=repo_id, token=token) return local_path return path os.environ["FLUX_FILL_PATH"] = "hf://black-forest-labs/FLUX.1-Fill-dev" os.environ["PORTRAIT_MODEL_PATH"] = "ms://iic/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors" os.environ["SUBJECT_MODEL_PATH"] = "ms://iic/ACE_Plus@subject/comfyui_subject_lora16.safetensors" os.environ["LOCAL_MODEL_PATH"] = "ms://iic/ACE_Plus@local_editing/comfyui_local_lora16.safetensors" os.environ["ACE_PLUS_FFT_MODEL"] = "hf://ali-vilab/ACE_Plus@ace_plus_fft.safetensors" flux_full = resolve_hf_path(os.environ["FLUX_FILL_PATH"]) ace_plus_fft_model_path = resolve_hf_path(os.environ["ACE_PLUS_FFT_MODEL"]) # Update the environment variables with the resolved local file paths. os.environ["ACE_PLUS_FFT_MODEL"] = ace_plus_fft_model_path os.environ["FLUX_FILL_PATH"] = flux_full from inference.ace_plus_inference import ACEInference from scepter.modules.utils.config import Config from modules.flux import FluxMRModiACEPlus from inference.registry import INFERENCES config_path = os.path.join("config", "ace_plus_fft.yaml") cfg = Config(load=True, cfg_file=config_path) # Instantiate the ACEInference object. ace_infer = ACEInference(cfg) def face_swap_app(target_img, face_img): if target_img is None or face_img is None: raise ValueError("Both a target image and a face image must be provided.") # (Optional) Ensure images are in RGB target_img = target_img.convert("RGB") face_img = face_img.convert("RGB") output_img, edit_image, change_image, mask, seed = ace_infer( reference_image=target_img, edit_image=face_img, edit_mask=None, # Let ACE++ generate the mask automatically prompt="Face swap", output_height=1024, output_width=1024, sampler='flow_euler', sample_steps=28, guide_scale=50, seed=-1 # Random seed if not provided ) return output_img # Create the Gradio interface. iface = gr.Interface( fn=face_swap_app, inputs=[ gr.Image(type="pil", label="Target Image"), gr.Image(type="pil", label="Face Image") ], outputs=gr.Image(type="pil", label="Swapped Face Output"), title="ACE++ Face Swap Demo", description="Upload a target image and a face image to swap the face using the ACE++ model." ) if __name__ == "__main__": iface.launch()