#!/usr/bin/env python # coding: utf-8 # In[1]: #!/usr/bin/env python # coding: utf-8 import os import json import requests import gradio as gr from typing import Literal, List, Dict, Any from pydantic import BaseModel, Field from dotenv import load_dotenv from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import WebBaseLoader from langchain_community.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain.schema import Document from langgraph.graph import END, StateGraph from typing_extensions import TypedDict # Load environment variables load_dotenv() # Configuration BASE_URL = "https://api.llama.com/v1" LLAMA_API_KEY = os.environ.get('LLAMA_API_KEY') # Initialize global variables vectorstore = None retriever = None web_search_tool = None app = None class RouteQuery(BaseModel): """Route a user query to the most relevant datasource.""" datasource: Literal["vectorstore", "web_search"] = Field( ..., description="Given a user question choose to route it to web search or a vectorstore.", ) class GraphState(TypedDict): """Represents the state of our graph.""" question: str generation: str web_search: str documents: List[str] def initialize_system(): """Initialize the RAG system with vectorstore and workflow.""" global vectorstore, retriever, web_search_tool, app try: # Read configuration with open('wragby.json', 'r') as file: data = json.load(file) urls = data["urls"] # Build Index docs = [WebBaseLoader(url).load() for url in urls] docs_list = [item for sublist in docs for item in sublist] text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=500, chunk_overlap=0 ) doc_splits = text_splitter.split_documents(docs_list) vectorstore = Chroma.from_documents( documents=doc_splits, collection_name="rag-chroma", embedding=HuggingFaceEmbeddings(), ) retriever = vectorstore.as_retriever() # Initialize web search web_search_tool = TavilySearchResults(k=3) # Build workflow app = build_workflow() return "✅ System initialized successfully!" except Exception as e: return f"❌ Error initializing system: {str(e)}" def chat_completion(messages, model="Llama-4-Scout-17B-16E-Instruct-FP8", max_tokens=1024): """Make API call to Llama.""" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {LLAMA_API_KEY}", } payload = { "messages": messages, "model": model, "max_tokens": max_tokens, "stream": False, } response = requests.post("https://api.llama.com/v1/chat/completions", headers=headers, json=payload) return response def route_query(question: str) -> RouteQuery: """Route a user question using Llama API with structured output.""" system_message = """You are an expert at routing a user question to a vectorstore or web search. The vectorstore contains documents related to the business Wragby Solutions, their product information, and customer sales. Use the vectorstore for questions on these topics. Otherwise, use web-search. You must respond with a JSON object in this exact format: {"datasource": "vectorstore"} or {"datasource": "web_search"} Only respond with the JSON object, no additional text.""" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": question} ] try: response = chat_completion(messages, max_tokens=50) content = response.json()['completion_message']['content']['text'].strip() route_data = json.loads(content) return RouteQuery(**route_data) except Exception as e: print(f"Error parsing response: {e}") return RouteQuery(datasource="web_search") def format_docs(docs): """Format a list of documents into a single string.""" if not docs: return "" formatted_docs = [] for doc in docs: try: if hasattr(doc, 'page_content'): formatted_docs.append(doc.page_content) elif isinstance(doc, dict) and 'content' in doc: formatted_docs.append(doc['content']) elif isinstance(doc, dict) and 'page_content' in doc: formatted_docs.append(doc['page_content']) elif isinstance(doc, str): formatted_docs.append(doc) else: formatted_docs.append(str(doc)) except Exception as e: print(f"Error processing document: {e}") formatted_docs.append(str(doc)) return "\n\n".join(formatted_docs) def rag_generate_answer(question: str, docs: list) -> str: """Generate an answer using RAG.""" system_message = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.""" context = format_docs(docs) user_message = f"""Context: {context} Question: {question} Answer:""" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ] try: response = chat_completion(messages, max_tokens=512) answer = response.json()['completion_message']['content']['text'].strip() return answer except Exception as e: print(f"Error generating RAG answer: {e}") return "I apologize, but I encountered an error while generating an answer." def grade_answer_quality(question: str, generation: str) -> dict: """Grade whether an LLM generation addresses/resolves the user question.""" system_message = """You are a grader assessing whether an answer addresses / resolves a question. Give a binary score 'yes' or 'no'. 'Yes' means that the answer resolves the question. You must respond with exactly one word: - yes (if the answer addresses and resolves the question) - no (if the answer does not address or resolve the question) Only respond with 'yes' or 'no', no additional text or explanation.""" user_message = f"User question: \n\n {question} \n\n LLM generation: {generation}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ] try: response = chat_completion(messages, max_tokens=10) content = response.json()['completion_message']['content']['text'].strip().lower() if "yes" in content: score = "yes" elif "no" in content: score = "no" else: score = "no" return {"score": score} except Exception as e: print(f"Error calling Llama API for answer grading: {e}") return {"score": "no"} def grade_hallucinations(documents: list, generation: str) -> dict: """Grade whether an LLM generation is grounded in the provided documents.""" system_message = """You are a grader assessing whether an LLM generation is grounded in / supported by a set of retrieved facts. Give a binary score 'yes' or 'no'. 'Yes' means that the answer is grounded in / supported by the set of facts. You must respond with exactly one word: - yes (if the generation is grounded in the facts) - no (if the generation contains hallucinations or unsupported claims) Only respond with 'yes' or 'no', no additional text or explanation.""" if isinstance(documents, list): if documents and hasattr(documents[0], 'page_content'): docs_text = format_docs(documents) else: docs_text = "\n\n".join(documents) else: docs_text = str(documents) user_message = f"Set of facts: \n\n {docs_text} \n\n LLM generation: {generation}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ] try: response = chat_completion(messages, max_tokens=10) content = response.json()['completion_message']['content']['text'].strip().lower() if "yes" in content: score = "yes" elif "no" in content: score = "no" else: score = "no" return {"score": score} except Exception as e: print(f"Error calling Llama API for hallucination grading: {e}") return {"score": "no"} def grade_document_relevance(question: str, document: str) -> dict: """Grade the relevance of a retrieved document to a user question.""" system_message = """You are a grader assessing relevance of a retrieved document to a user question. If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. It does not need to be a stringent test. The goal is to filter out erroneous retrievals. Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. You must respond with exactly one word: - yes (if document is relevant) - no (if document is not relevant) Only respond with 'yes' or 'no', no additional text or explanation.""" user_message = f"Retrieved document: \n\n {document} \n\n User question: {question}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ] try: response = chat_completion(messages) content = response.json()['completion_message']['content']['text'].strip().lower() if "yes" in content: score = "yes" elif "no" in content: score = "no" else: score = "no" return {"score": score} except Exception as e: print(f"Error calling Llama API for document grading: {e}") return {"score": "no"} # Workflow Nodes def retrieve(state): """Retrieve documents from vectorstore""" print("---RETRIEVE---") question = state["question"] documents = retriever.invoke(question) return {"documents": documents, "question": question} def generate(state): """Generate answer using RAG on retrieved documents""" print("---GENERATE---") question = state["question"] documents = state["documents"] generation = rag_generate_answer(question, documents) return {"documents": documents, "question": question, "generation": generation} def grade_documents(state): """Determines whether the retrieved documents are relevant to the question""" print("---CHECK DOCUMENT RELEVANCE TO QUESTION---") question = state["question"] documents = state["documents"] filtered_docs = [] web_search = "No" for d in documents: score = grade_document_relevance(question, d.page_content) grade = score["score"] if grade.lower() == "yes": print("---GRADE: DOCUMENT RELEVANT---") filtered_docs.append(d) else: print("---GRADE: DOCUMENT NOT RELEVANT---") web_search = "Yes" continue return {"documents": filtered_docs, "question": question, "web_search": web_search} def web_search(state): """Web search based on the question""" print("---WEB SEARCH---", state) question = state["question"] documents = state.get("documents") docs = web_search_tool.invoke({"query": question}) web_results = "\n".join([d["content"] for d in docs]) web_results = Document(page_content=web_results) if documents is not None: documents.append(web_results) else: documents = [web_results] return {"documents": documents, "question": question} def route_question(state): """Route question to web search or RAG.""" print("---ROUTE QUESTION---") question = state["question"] source = route_query(question) if source.datasource == 'web_search': print("---ROUTE QUESTION TO WEB SEARCH---") return "websearch" elif source.datasource == 'vectorstore': print("---ROUTE QUESTION TO RAG---") return "vectorstore" def decide_to_generate(state): """Determines whether to generate an answer, or add web search""" print("---ASSESS GRADED DOCUMENTS---") web_search = state["web_search"] if web_search == "Yes": print("---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, INCLUDE WEB SEARCH---") return "websearch" else: print("---DECISION: GENERATE---") return "generate" def grade_generation_v_documents_and_question(state): """Determines whether the generation is grounded in the document and answers question.""" print("---CHECK HALLUCINATIONS---") question = state["question"] documents = state["documents"] generation = state["generation"] score = grade_hallucinations(documents, generation) grade = score["score"] if grade == "yes": print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---") print("---GRADE GENERATION vs QUESTION---") score = grade_answer_quality(question, generation) grade = score["score"] if grade == "yes": print("---DECISION: GENERATION ADDRESSES QUESTION---") return "useful" else: print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---") return "not useful" else: print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---") return "not supported" def build_workflow(): """Build the RAG workflow graph.""" workflow = StateGraph(GraphState) # Define the nodes workflow.add_node("websearch", web_search) workflow.add_node("retrieve", retrieve) workflow.add_node("grade_documents", grade_documents) workflow.add_node("generate", generate) # Build graph workflow.set_conditional_entry_point( route_question, { "websearch": "websearch", "vectorstore": "retrieve", }, ) workflow.add_edge("retrieve", "grade_documents") workflow.add_conditional_edges( "grade_documents", decide_to_generate, { "websearch": "websearch", "generate": "generate", }, ) workflow.add_edge("websearch", "generate") workflow.add_conditional_edges( "generate", grade_generation_v_documents_and_question, { "not supported": "generate", "useful": END, "not useful": "websearch", }, ) return workflow.compile().with_config({"run_name": "Wragby Solutions Assistant"}) def process_question(question: str, history: List[List[str]]) -> tuple: """Process a question through the RAG system and return the answer with sources.""" if not question.strip(): return history, "Please enter a question." if app is None: return history, "❌ System not initialized. Please click 'Initialize System' first." try: # Process through the workflow inputs = {"question": question} final_state = None for output in app.stream(inputs): for key, value in output.items(): print(f"Finished running: {key}") final_state = value if final_state and "generation" in final_state: answer = final_state["generation"] # Get source information sources = [] if "documents" in final_state and final_state["documents"]: for i, doc in enumerate(final_state["documents"][:3]): # Show top 3 sources if hasattr(doc, 'metadata') and 'source' in doc.metadata: sources.append(f"Source {i+1}: {doc.metadata['source']}") else: sources.append(f"Source {i+1}: Retrieved document") # Format response with sources if sources: full_response = f"{answer}\n\n**Sources:**\n" + "\n".join(sources) else: full_response = answer # Update chat history history.append([question, full_response]) return history, "" else: history.append([question, "I apologize, but I couldn't generate an answer for your question."]) return history, "" except Exception as e: error_msg = f"❌ Error processing question: {str(e)}" history.append([question, error_msg]) return history, "" def clear_chat(): """Clear the chat history.""" return [], "" # Create Gradio Interface def create_gradio_app(): """Create and configure the Gradio interface.""" # Custom CSS for better styling css = """ .gradio-container { max-width: 1200px !important; margin: auto !important; } .chat-container { height: 500px !important; } .title { text-align: center; color: #2D5AA0; margin-bottom: 20px; } .description { text-align: center; color: #666; margin-bottom: 30px; } """ with gr.Blocks(css=css, title="Wragby Solutions Q&A Assistant") as demo: gr.HTML("""

🤖 Wragby Solutions Q&A Assistant

Ask questions about Wragby Solutions products, services, and business information. The system will search through company documents and the web to provide accurate answers.

""") with gr.Row(): with gr.Column(scale=3): # Chat interface chatbot = gr.Chatbot( label="Chat History", height=500, show_label=True, container=True, elem_classes=["chat-container"] ) with gr.Row(): question_input = gr.Textbox( placeholder="Ask a question about Wragby Solutions...", label="Your Question", lines=2, scale=4 ) submit_btn = gr.Button("Submit", variant="primary", scale=1) with gr.Row(): clear_btn = gr.Button("Clear Chat", variant="secondary") with gr.Column(scale=1): # System controls gr.HTML("

System Controls

") init_btn = gr.Button("Initialize System", variant="primary") init_status = gr.Textbox( label="System Status", value="Click 'Initialize System' to start", interactive=False ) gr.HTML("""

💡 Sample Questions:

""") # Event handlers init_btn.click( fn=initialize_system, outputs=[init_status] ) submit_btn.click( fn=process_question, inputs=[question_input, chatbot], outputs=[chatbot, question_input] ) question_input.submit( fn=process_question, inputs=[question_input, chatbot], outputs=[chatbot, question_input] ) clear_btn.click( fn=clear_chat, outputs=[chatbot, question_input] ) return demo # In[2]: # Create and launch the Gradio app demo = create_gradio_app() demo.launch( server_name="0.0.0.0", server_port=7860, share=True, # Set to True if you want to create a public link debug=True )