Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
import requests
|
6 |
import torch
|
7 |
import os
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
|
11 |
# Configuraci贸n del modelo de lenguaje
|
@@ -18,16 +18,16 @@ if not HF_TOKEN:
|
|
18 |
|
19 |
print("馃攧 Cargando modelo de lenguaje...")
|
20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
21 |
-
|
22 |
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
MODEL_NAME,
|
25 |
torch_dtype=torch.float16,
|
26 |
-
quantization_config=bnb_config,
|
27 |
device_map="auto",
|
28 |
token=HF_TOKEN
|
29 |
)
|
30 |
|
|
|
31 |
# Memoria conversacional
|
32 |
memory = ConversationBufferMemory()
|
33 |
|
|
|
5 |
import requests
|
6 |
import torch
|
7 |
import os
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
|
11 |
# Configuraci贸n del modelo de lenguaje
|
|
|
18 |
|
19 |
print("馃攧 Cargando modelo de lenguaje...")
|
20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
21 |
+
|
22 |
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
MODEL_NAME,
|
25 |
torch_dtype=torch.float16,
|
|
|
26 |
device_map="auto",
|
27 |
token=HF_TOKEN
|
28 |
)
|
29 |
|
30 |
+
|
31 |
# Memoria conversacional
|
32 |
memory = ConversationBufferMemory()
|
33 |
|