Abhishek Thakur
commited on
Commit
·
4be0753
1
Parent(s):
1fffe05
more fixes
Browse files- competitions/competitions.py +32 -11
- competitions/leaderboard.py +7 -3
competitions/competitions.py
CHANGED
|
@@ -81,6 +81,24 @@ def _update_selected_submissions(user_token, submission_ids):
|
|
| 81 |
return _my_submissions(user_token)
|
| 82 |
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
with gr.Blocks() as demo:
|
| 85 |
with gr.Tabs() as tab_container:
|
| 86 |
with gr.TabItem("Overview", id="overview"):
|
|
@@ -89,13 +107,15 @@ with gr.Blocks() as demo:
|
|
| 89 |
gr.Markdown("## Dataset")
|
| 90 |
gr.Markdown(f"{competition_info.dataset_description}")
|
| 91 |
with gr.TabItem("Public Leaderboard", id="public_leaderboard") as public_leaderboard:
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
| 93 |
with gr.TabItem("Private Leaderboard", id="private_leaderboard") as private_leaderboard:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
gr.Markdown("Private Leaderboard will be available after the competition ends")
|
| 99 |
with gr.TabItem("New Submission", id="new_submission"):
|
| 100 |
gr.Markdown(SUBMISSION_TEXT.format(competition_info.submission_limit))
|
| 101 |
user_token = gr.Textbox(
|
|
@@ -135,8 +155,9 @@ with gr.Blocks() as demo:
|
|
| 135 |
outputs=[output_text, output_df, selected_submissions, update_selected_submissions],
|
| 136 |
)
|
| 137 |
|
| 138 |
-
fetch_lb_partial = partial(
|
| 139 |
-
public_leaderboard.select(fetch_lb_partial, inputs=[], outputs=[output_df_public])
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
| 81 |
return _my_submissions(user_token)
|
| 82 |
|
| 83 |
|
| 84 |
+
def _fetch_leaderboard(private):
|
| 85 |
+
if private:
|
| 86 |
+
current_date_time = datetime.now()
|
| 87 |
+
if current_date_time < competition_info.end_date:
|
| 88 |
+
return [
|
| 89 |
+
gr.DataFrame.update(visible=False),
|
| 90 |
+
gr.Markdown.update(
|
| 91 |
+
visible=True, value="Private Leaderboard will be available after the competition ends"
|
| 92 |
+
),
|
| 93 |
+
]
|
| 94 |
+
df = leaderboard.fetch(private=private)
|
| 95 |
+
num_teams = len(df)
|
| 96 |
+
return [
|
| 97 |
+
gr.DataFrame.update(visible=True, value=df),
|
| 98 |
+
gr.Markdown.update(visible=True, value=f"Number of teams: {num_teams}"),
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
with gr.Blocks() as demo:
|
| 103 |
with gr.Tabs() as tab_container:
|
| 104 |
with gr.TabItem("Overview", id="overview"):
|
|
|
|
| 107 |
gr.Markdown("## Dataset")
|
| 108 |
gr.Markdown(f"{competition_info.dataset_description}")
|
| 109 |
with gr.TabItem("Public Leaderboard", id="public_leaderboard") as public_leaderboard:
|
| 110 |
+
output_text_public = gr.Markdown()
|
| 111 |
+
output_df_public = gr.DataFrame(
|
| 112 |
+
row_count=(50, "dynamic"), overflow_row_behaviour="paginate", visible=False
|
| 113 |
+
)
|
| 114 |
with gr.TabItem("Private Leaderboard", id="private_leaderboard") as private_leaderboard:
|
| 115 |
+
output_text_private = gr.Markdown()
|
| 116 |
+
output_df_private = gr.DataFrame(
|
| 117 |
+
row_count=(50, "dynamic"), overflow_row_behaviour="paginate", visible=False
|
| 118 |
+
)
|
|
|
|
| 119 |
with gr.TabItem("New Submission", id="new_submission"):
|
| 120 |
gr.Markdown(SUBMISSION_TEXT.format(competition_info.submission_limit))
|
| 121 |
user_token = gr.Textbox(
|
|
|
|
| 155 |
outputs=[output_text, output_df, selected_submissions, update_selected_submissions],
|
| 156 |
)
|
| 157 |
|
| 158 |
+
fetch_lb_partial = partial(_fetch_leaderboard, private=False)
|
| 159 |
+
public_leaderboard.select(fetch_lb_partial, inputs=[], outputs=[output_df_public, output_text_public])
|
| 160 |
+
fetch_lb_partial_private = partial(_fetch_leaderboard, private=True)
|
| 161 |
+
private_leaderboard.select(
|
| 162 |
+
fetch_lb_partial_private, inputs=[], outputs=[output_df_private, output_text_private]
|
| 163 |
+
)
|
competitions/leaderboard.py
CHANGED
|
@@ -71,12 +71,15 @@ class Leaderboard:
|
|
| 71 |
return submissions
|
| 72 |
|
| 73 |
def _process_private_lb(self):
|
|
|
|
| 74 |
submissions_folder = snapshot_download(
|
| 75 |
repo_id=self.competition_id,
|
| 76 |
allow_patterns="*.json",
|
| 77 |
use_auth_token=self.autotrain_token,
|
| 78 |
repo_type="dataset",
|
| 79 |
)
|
|
|
|
|
|
|
| 80 |
submissions = []
|
| 81 |
for submission in glob.glob(os.path.join(submissions_folder, "*.json")):
|
| 82 |
with open(submission, "r") as f:
|
|
@@ -134,6 +137,7 @@ class Leaderboard:
|
|
| 134 |
"submission_time": submission_info["submissions"]["time"],
|
| 135 |
}
|
| 136 |
submissions.append(temp_info)
|
|
|
|
| 137 |
return submissions
|
| 138 |
|
| 139 |
def fetch(self, private=False):
|
|
@@ -153,9 +157,6 @@ class Leaderboard:
|
|
| 153 |
# only keep submissions before or on the end date
|
| 154 |
df = df[df["submission_datetime"] <= self.end_date].reset_index(drop=True)
|
| 155 |
|
| 156 |
-
# convert datetime column to string
|
| 157 |
-
df["submission_datetime"] = df["submission_datetime"].dt.strftime("%Y-%m-%d %H:%M:%S")
|
| 158 |
-
|
| 159 |
# sort by submission datetime
|
| 160 |
# sort by public score and submission datetime
|
| 161 |
if self.eval_higher_is_better:
|
|
@@ -191,5 +192,8 @@ class Leaderboard:
|
|
| 191 |
df = df.reset_index(drop=True)
|
| 192 |
df["rank"] = df.index + 1
|
| 193 |
|
|
|
|
|
|
|
|
|
|
| 194 |
columns = self.public_columns if not private else self.private_columns
|
| 195 |
return df[columns]
|
|
|
|
| 71 |
return submissions
|
| 72 |
|
| 73 |
def _process_private_lb(self):
|
| 74 |
+
start_time = time.time()
|
| 75 |
submissions_folder = snapshot_download(
|
| 76 |
repo_id=self.competition_id,
|
| 77 |
allow_patterns="*.json",
|
| 78 |
use_auth_token=self.autotrain_token,
|
| 79 |
repo_type="dataset",
|
| 80 |
)
|
| 81 |
+
logger.info(f"Downloaded submissions in {time.time() - start_time} seconds")
|
| 82 |
+
start_time = time.time()
|
| 83 |
submissions = []
|
| 84 |
for submission in glob.glob(os.path.join(submissions_folder, "*.json")):
|
| 85 |
with open(submission, "r") as f:
|
|
|
|
| 137 |
"submission_time": submission_info["submissions"]["time"],
|
| 138 |
}
|
| 139 |
submissions.append(temp_info)
|
| 140 |
+
logger.info(f"Processed submissions in {time.time() - start_time} seconds")
|
| 141 |
return submissions
|
| 142 |
|
| 143 |
def fetch(self, private=False):
|
|
|
|
| 157 |
# only keep submissions before or on the end date
|
| 158 |
df = df[df["submission_datetime"] <= self.end_date].reset_index(drop=True)
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
# sort by submission datetime
|
| 161 |
# sort by public score and submission datetime
|
| 162 |
if self.eval_higher_is_better:
|
|
|
|
| 192 |
df = df.reset_index(drop=True)
|
| 193 |
df["rank"] = df.index + 1
|
| 194 |
|
| 195 |
+
# convert datetime column to string
|
| 196 |
+
df["submission_datetime"] = df["submission_datetime"].dt.strftime("%Y-%m-%d %H:%M:%S")
|
| 197 |
+
|
| 198 |
columns = self.public_columns if not private else self.private_columns
|
| 199 |
return df[columns]
|