Spaces:
Running
on
A10G
Running
on
A10G
Updated app.py
Browse filesAdd multiple images in inference and download zip file
app.py
CHANGED
@@ -1,150 +1,133 @@
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
6 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
from gfpgan.utils import GFPGANer
|
8 |
from realesrgan.utils import RealESRGANer
|
9 |
|
10 |
-
|
11 |
-
# download weights
|
12 |
if not os.path.exists('realesr-general-x4v3.pth'):
|
13 |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if not os.path.exists(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
torch.hub.download_url_to_file(
|
26 |
-
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
27 |
-
'lincoln.jpg')
|
28 |
-
torch.hub.download_url_to_file(
|
29 |
-
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
30 |
-
'AI-generate.jpg')
|
31 |
-
torch.hub.download_url_to_file(
|
32 |
-
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
33 |
-
'Blake_Lively.jpg')
|
34 |
-
torch.hub.download_url_to_file(
|
35 |
-
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
36 |
-
'10045.png')
|
37 |
-
|
38 |
-
# background enhancer with RealESRGAN
|
39 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
os.makedirs('output', exist_ok=True)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
# def inference(img, version, scale, weight):
|
48 |
-
def inference(img, version, scale):
|
49 |
-
# weight /= 100
|
50 |
-
print(img, version, scale)
|
51 |
-
if scale > 4:
|
52 |
-
scale = 4 # avoid too large scale value
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
if
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
extension = 'png'
|
103 |
-
else:
|
104 |
-
extension = 'jpg'
|
105 |
-
save_path = f'output/out.{extension}'
|
106 |
-
cv2.imwrite(save_path, output)
|
107 |
-
|
108 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
109 |
-
return output, save_path
|
110 |
-
except Exception as error:
|
111 |
-
print('global exception', error)
|
112 |
-
return None, None
|
113 |
-
|
114 |
-
|
115 |
-
title = "GFPGAN: Practical Face Restoration Algorithm"
|
116 |
-
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
117 |
-
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
118 |
-
To use it, simply upload your image.<br>
|
119 |
-
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π
|
120 |
-
"""
|
121 |
-
article = r"""
|
122 |
-
|
123 |
-
[](https://github.com/TencentARC/GFPGAN/releases)
|
124 |
-
[](https://github.com/TencentARC/GFPGAN)
|
125 |
-
[](https://arxiv.org/abs/2101.04061)
|
126 |
-
|
127 |
-
If you have any question, please email π§ `[email protected]` or `[email protected]`.
|
128 |
-
|
129 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
130 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
131 |
-
"""
|
132 |
demo = gr.Interface(
|
133 |
-
inference,
|
134 |
-
|
135 |
-
|
136 |
-
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
|
137 |
-
gr.Number(label="Rescaling
|
138 |
-
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
|
139 |
-
], [
|
140 |
-
gr.Image(type="numpy", label="Output (The whole image)"),
|
141 |
-
gr.File(label="Download the output image")
|
142 |
],
|
|
|
143 |
title=title,
|
144 |
description=description,
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
['10045.png', 'v1.4', 2]])
|
150 |
-
demo.queue().launch()
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
+
import zipfile
|
4 |
import cv2
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
+
import numpy as np
|
8 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
9 |
from gfpgan.utils import GFPGANer
|
10 |
from realesrgan.utils import RealESRGANer
|
11 |
|
12 |
+
# βββ download weights if missing βββ
|
|
|
13 |
if not os.path.exists('realesr-general-x4v3.pth'):
|
14 |
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
15 |
+
for fname, url in [
|
16 |
+
('GFPGANv1.2.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth'),
|
17 |
+
('GFPGANv1.3.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'),
|
18 |
+
('GFPGANv1.4.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'),
|
19 |
+
('RestoreFormer.pth','https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'),
|
20 |
+
]:
|
21 |
+
if not os.path.exists(fname):
|
22 |
+
os.system(f"wget {url} -P .")
|
23 |
+
|
24 |
+
# βββ background upsampler βββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
26 |
+
upsampler = RealESRGANer(
|
27 |
+
scale=4, model_path='realesr-general-x4v3.pth', model=model,
|
28 |
+
tile=256, tile_pad=10, pre_pad=0,
|
29 |
+
half=torch.cuda.is_available()
|
30 |
+
)
|
31 |
|
32 |
os.makedirs('output', exist_ok=True)
|
33 |
|
34 |
+
def process_single_image(img_path, version, scale):
|
35 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
36 |
+
if img is None:
|
37 |
+
return None
|
38 |
+
|
39 |
+
# handle alpha & grayscale
|
40 |
+
img_mode = 'RGBA' if (img.ndim==3 and img.shape[2]==4) else None
|
41 |
+
if img.ndim == 2:
|
42 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
43 |
+
|
44 |
+
h, w = img.shape[:2]
|
45 |
+
|
46 |
+
# robust resize
|
47 |
+
min_size, max_size = 512, 2048
|
48 |
+
if max(h, w) < min_size:
|
49 |
+
scale_factor = min_size / max(h, w)
|
50 |
+
img = cv2.resize(img, (int(w * scale_factor), int(h * scale_factor)))
|
51 |
+
elif max(h, w) > max_size:
|
52 |
+
scale_factor = max_size / max(h, w)
|
53 |
+
img = cv2.resize(img, (int(w * scale_factor), int(h * scale_factor)))
|
54 |
+
|
55 |
+
# map version β filename & arch
|
56 |
+
if version.startswith('v'):
|
57 |
+
model_fname = f'GFPGAN{version}.pth'
|
58 |
+
arch = 'clean'
|
59 |
+
else:
|
60 |
+
model_fname = f'{version}.pth'
|
61 |
+
arch = version
|
62 |
+
|
63 |
+
face_enhancer = GFPGANer(
|
64 |
+
model_path=model_fname,
|
65 |
+
upscale=2,
|
66 |
+
arch=arch,
|
67 |
+
channel_multiplier=2,
|
68 |
+
bg_upsampler=upsampler
|
69 |
+
)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
try:
|
72 |
+
_, _, restored = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
73 |
+
except RuntimeError as e:
|
74 |
+
print("GFPGAN error:", e)
|
75 |
+
return None
|
76 |
+
|
77 |
+
if restored is None:
|
78 |
+
print(f"Restoration failed for {img_path}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
# sanitize output to avoid black rectangles
|
82 |
+
restored = np.nan_to_num(restored, nan=0.0, posinf=255.0, neginf=0.0)
|
83 |
+
restored = np.clip(restored, 0, 255).astype(np.uint8)
|
84 |
+
|
85 |
+
# rescale if needed
|
86 |
+
if scale != 2:
|
87 |
+
interp = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
88 |
+
h, w = img.shape[:2]
|
89 |
+
restored = cv2.resize(restored, (int(w * scale / 2), int(h * scale / 2)), interpolation=interp)
|
90 |
+
|
91 |
+
ext = 'png' if img_mode == 'RGBA' else 'jpg'
|
92 |
+
base = os.path.basename(img_path).rsplit('.', 1)[0]
|
93 |
+
out_path = os.path.join('output', f"{base}_restored.{ext}")
|
94 |
+
cv2.imwrite(out_path, restored)
|
95 |
+
return out_path
|
96 |
+
|
97 |
+
def inference(img_files, version, scale):
|
98 |
+
"""
|
99 |
+
img_files: list of file objects or paths
|
100 |
+
returns: path to a ZIP archive containing all restored images
|
101 |
+
"""
|
102 |
+
saved = []
|
103 |
+
for p in img_files or []:
|
104 |
+
img_path = p.name if hasattr(p, 'name') else p
|
105 |
+
out = process_single_image(img_path, version, scale)
|
106 |
+
if out:
|
107 |
+
saved.append(out)
|
108 |
+
|
109 |
+
zip_name = f"output/restored_{uuid.uuid4().hex}.zip"
|
110 |
+
with zipfile.ZipFile(zip_name, 'w') as z:
|
111 |
+
for fpath in saved:
|
112 |
+
z.write(fpath, arcname=os.path.basename(fpath))
|
113 |
+
|
114 |
+
return zip_name
|
115 |
+
|
116 |
+
# βββ Gradio interface βββ
|
117 |
+
title = "GFPGAN MultiβImage Face Restoration + ZIP Download"
|
118 |
+
description = "Upload multiple images; restored outputs will be bundled into a ZIP for download."
|
119 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
demo = gr.Interface(
|
121 |
+
fn=inference,
|
122 |
+
inputs=[
|
123 |
+
gr.File(file_count="multiple", file_types=["image"], label="Input Images"),
|
124 |
+
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], value='v1.4', label='GFPGAN Version'),
|
125 |
+
gr.Number(label="Rescaling Factor", value=2)
|
|
|
|
|
|
|
|
|
126 |
],
|
127 |
+
outputs=gr.File(label="Download Restored ZIP"),
|
128 |
title=title,
|
129 |
description=description,
|
130 |
+
)
|
131 |
+
|
132 |
+
if _name_ == "_main_":
|
133 |
+
demo.queue().launch(share=True)
|
|
|
|