luthrabhuvan commited on
Commit
3d30604
Β·
verified Β·
1 Parent(s): a1972ac

Updated app.py

Browse files

Add multiple images in inference and download zip file

Files changed (1) hide show
  1. app.py +113 -130
app.py CHANGED
@@ -1,150 +1,133 @@
1
  import os
2
-
 
3
  import cv2
4
  import gradio as gr
5
  import torch
 
6
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
7
  from gfpgan.utils import GFPGANer
8
  from realesrgan.utils import RealESRGANer
9
 
10
- os.system("pip freeze")
11
- # download weights
12
  if not os.path.exists('realesr-general-x4v3.pth'):
13
  os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
14
- if not os.path.exists('GFPGANv1.2.pth'):
15
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
16
- if not os.path.exists('GFPGANv1.3.pth'):
17
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
18
- if not os.path.exists('GFPGANv1.4.pth'):
19
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
20
- if not os.path.exists('RestoreFormer.pth'):
21
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
22
- if not os.path.exists('CodeFormer.pth'):
23
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
24
-
25
- torch.hub.download_url_to_file(
26
- 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
27
- 'lincoln.jpg')
28
- torch.hub.download_url_to_file(
29
- 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
30
- 'AI-generate.jpg')
31
- torch.hub.download_url_to_file(
32
- 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
33
- 'Blake_Lively.jpg')
34
- torch.hub.download_url_to_file(
35
- 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
36
- '10045.png')
37
-
38
- # background enhancer with RealESRGAN
39
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
40
- model_path = 'realesr-general-x4v3.pth'
41
- half = True if torch.cuda.is_available() else False
42
- upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
 
 
43
 
44
  os.makedirs('output', exist_ok=True)
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- # def inference(img, version, scale, weight):
48
- def inference(img, version, scale):
49
- # weight /= 100
50
- print(img, version, scale)
51
- if scale > 4:
52
- scale = 4 # avoid too large scale value
53
  try:
54
- extension = os.path.splitext(os.path.basename(str(img)))[1]
55
- img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
56
- if len(img.shape) == 3 and img.shape[2] == 4:
57
- img_mode = 'RGBA'
58
- elif len(img.shape) == 2: # for gray inputs
59
- img_mode = None
60
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
61
- else:
62
- img_mode = None
63
-
64
- h, w = img.shape[0:2]
65
- if h > 3500 or w > 3500:
66
- print('too large size')
67
- return None, None
68
-
69
- if h < 300:
70
- img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
71
-
72
- if version == 'v1.2':
73
- face_enhancer = GFPGANer(
74
- model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
75
- elif version == 'v1.3':
76
- face_enhancer = GFPGANer(
77
- model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
78
- elif version == 'v1.4':
79
- face_enhancer = GFPGANer(
80
- model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
81
- elif version == 'RestoreFormer':
82
- face_enhancer = GFPGANer(
83
- model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
84
- # elif version == 'CodeFormer':
85
- # face_enhancer = GFPGANer(
86
- # model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
87
-
88
- try:
89
- # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
90
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
91
- except RuntimeError as error:
92
- print('Error', error)
93
-
94
- try:
95
- if scale != 2:
96
- interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
97
- h, w = img.shape[0:2]
98
- output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
99
- except Exception as error:
100
- print('wrong scale input.', error)
101
- if img_mode == 'RGBA': # RGBA images should be saved in png format
102
- extension = 'png'
103
- else:
104
- extension = 'jpg'
105
- save_path = f'output/out.{extension}'
106
- cv2.imwrite(save_path, output)
107
-
108
- output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
109
- return output, save_path
110
- except Exception as error:
111
- print('global exception', error)
112
- return None, None
113
-
114
-
115
- title = "GFPGAN: Practical Face Restoration Algorithm"
116
- description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
117
- It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
118
- To use it, simply upload your image.<br>
119
- If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
120
- """
121
- article = r"""
122
-
123
- [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
124
- [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
125
- [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
126
-
127
- If you have any question, please email πŸ“§ `[email protected]` or `[email protected]`.
128
-
129
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
130
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
131
- """
132
  demo = gr.Interface(
133
- inference, [
134
- gr.Image(type="filepath", label="Input"),
135
- # gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
136
- gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
137
- gr.Number(label="Rescaling factor", value=2),
138
- # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
139
- ], [
140
- gr.Image(type="numpy", label="Output (The whole image)"),
141
- gr.File(label="Download the output image")
142
  ],
 
143
  title=title,
144
  description=description,
145
- article=article,
146
- # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
147
- # ['10045.png', 'v1.4', 2, 50]]).launch()
148
- examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
149
- ['10045.png', 'v1.4', 2]])
150
- demo.queue().launch()
 
1
  import os
2
+ import uuid
3
+ import zipfile
4
  import cv2
5
  import gradio as gr
6
  import torch
7
+ import numpy as np
8
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
9
  from gfpgan.utils import GFPGANer
10
  from realesrgan.utils import RealESRGANer
11
 
12
+ # β€”β€”β€” download weights if missing β€”β€”β€”
 
13
  if not os.path.exists('realesr-general-x4v3.pth'):
14
  os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
15
+ for fname, url in [
16
+ ('GFPGANv1.2.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth'),
17
+ ('GFPGANv1.3.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'),
18
+ ('GFPGANv1.4.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'),
19
+ ('RestoreFormer.pth','https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'),
20
+ ]:
21
+ if not os.path.exists(fname):
22
+ os.system(f"wget {url} -P .")
23
+
24
+ # β€”β€”β€” background upsampler β€”β€”β€”
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
26
+ upsampler = RealESRGANer(
27
+ scale=4, model_path='realesr-general-x4v3.pth', model=model,
28
+ tile=256, tile_pad=10, pre_pad=0,
29
+ half=torch.cuda.is_available()
30
+ )
31
 
32
  os.makedirs('output', exist_ok=True)
33
 
34
+ def process_single_image(img_path, version, scale):
35
+ img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
36
+ if img is None:
37
+ return None
38
+
39
+ # handle alpha & grayscale
40
+ img_mode = 'RGBA' if (img.ndim==3 and img.shape[2]==4) else None
41
+ if img.ndim == 2:
42
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
43
+
44
+ h, w = img.shape[:2]
45
+
46
+ # robust resize
47
+ min_size, max_size = 512, 2048
48
+ if max(h, w) < min_size:
49
+ scale_factor = min_size / max(h, w)
50
+ img = cv2.resize(img, (int(w * scale_factor), int(h * scale_factor)))
51
+ elif max(h, w) > max_size:
52
+ scale_factor = max_size / max(h, w)
53
+ img = cv2.resize(img, (int(w * scale_factor), int(h * scale_factor)))
54
+
55
+ # map version β†’ filename & arch
56
+ if version.startswith('v'):
57
+ model_fname = f'GFPGAN{version}.pth'
58
+ arch = 'clean'
59
+ else:
60
+ model_fname = f'{version}.pth'
61
+ arch = version
62
+
63
+ face_enhancer = GFPGANer(
64
+ model_path=model_fname,
65
+ upscale=2,
66
+ arch=arch,
67
+ channel_multiplier=2,
68
+ bg_upsampler=upsampler
69
+ )
70
 
 
 
 
 
 
 
71
  try:
72
+ _, _, restored = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
73
+ except RuntimeError as e:
74
+ print("GFPGAN error:", e)
75
+ return None
76
+
77
+ if restored is None:
78
+ print(f"Restoration failed for {img_path}")
79
+ return None
80
+
81
+ # sanitize output to avoid black rectangles
82
+ restored = np.nan_to_num(restored, nan=0.0, posinf=255.0, neginf=0.0)
83
+ restored = np.clip(restored, 0, 255).astype(np.uint8)
84
+
85
+ # rescale if needed
86
+ if scale != 2:
87
+ interp = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
88
+ h, w = img.shape[:2]
89
+ restored = cv2.resize(restored, (int(w * scale / 2), int(h * scale / 2)), interpolation=interp)
90
+
91
+ ext = 'png' if img_mode == 'RGBA' else 'jpg'
92
+ base = os.path.basename(img_path).rsplit('.', 1)[0]
93
+ out_path = os.path.join('output', f"{base}_restored.{ext}")
94
+ cv2.imwrite(out_path, restored)
95
+ return out_path
96
+
97
+ def inference(img_files, version, scale):
98
+ """
99
+ img_files: list of file objects or paths
100
+ returns: path to a ZIP archive containing all restored images
101
+ """
102
+ saved = []
103
+ for p in img_files or []:
104
+ img_path = p.name if hasattr(p, 'name') else p
105
+ out = process_single_image(img_path, version, scale)
106
+ if out:
107
+ saved.append(out)
108
+
109
+ zip_name = f"output/restored_{uuid.uuid4().hex}.zip"
110
+ with zipfile.ZipFile(zip_name, 'w') as z:
111
+ for fpath in saved:
112
+ z.write(fpath, arcname=os.path.basename(fpath))
113
+
114
+ return zip_name
115
+
116
+ # β€”β€”β€” Gradio interface β€”β€”β€”
117
+ title = "GFPGAN Multi‑Image Face Restoration + ZIP Download"
118
+ description = "Upload multiple images; restored outputs will be bundled into a ZIP for download."
119
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  demo = gr.Interface(
121
+ fn=inference,
122
+ inputs=[
123
+ gr.File(file_count="multiple", file_types=["image"], label="Input Images"),
124
+ gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], value='v1.4', label='GFPGAN Version'),
125
+ gr.Number(label="Rescaling Factor", value=2)
 
 
 
 
126
  ],
127
+ outputs=gr.File(label="Download Restored ZIP"),
128
  title=title,
129
  description=description,
130
+ )
131
+
132
+ if _name_ == "_main_":
133
+ demo.queue().launch(share=True)