Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- main.py +177 -0
- mesh_to_pc.py +58 -0
main.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, argparse, importlib
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
import trimesh
|
| 5 |
+
import numpy as np
|
| 6 |
+
from MeshAnything.models.meshanything import MeshAnything
|
| 7 |
+
import datetime
|
| 8 |
+
from accelerate import Accelerator
|
| 9 |
+
from accelerate.utils import set_seed
|
| 10 |
+
from accelerate.utils import DistributedDataParallelKwargs
|
| 11 |
+
from safetensors import safe_open
|
| 12 |
+
from mesh_to_pc import process_mesh_to_pc
|
| 13 |
+
from huggingface_hub import hf_hub_download
|
| 14 |
+
|
| 15 |
+
class Dataset:
|
| 16 |
+
def __init__(self, input_type, input_list, mc=False):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.data = []
|
| 19 |
+
if input_type == 'pc_normal':
|
| 20 |
+
for input_path in input_list:
|
| 21 |
+
# load npy
|
| 22 |
+
cur_data = np.load(input_path)
|
| 23 |
+
# sample 4096
|
| 24 |
+
assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
|
| 25 |
+
idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
|
| 26 |
+
cur_data = cur_data[idx]
|
| 27 |
+
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
| 28 |
+
|
| 29 |
+
elif input_type == 'mesh':
|
| 30 |
+
mesh_list = []
|
| 31 |
+
for input_path in input_list:
|
| 32 |
+
# load ply
|
| 33 |
+
cur_data = trimesh.load(input_path)
|
| 34 |
+
mesh_list.append(cur_data)
|
| 35 |
+
if mc:
|
| 36 |
+
print("First Marching Cubes and then sample point cloud, need several minutes...")
|
| 37 |
+
pc_list, _ = process_mesh_to_pc(mesh_list, marching_cubes=mc)
|
| 38 |
+
for input_path, cur_data in zip(input_list, pc_list):
|
| 39 |
+
self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
|
| 40 |
+
print(f"dataset total data samples: {len(self.data)}")
|
| 41 |
+
|
| 42 |
+
def __len__(self):
|
| 43 |
+
return len(self.data)
|
| 44 |
+
|
| 45 |
+
def __getitem__(self, idx):
|
| 46 |
+
data_dict = {}
|
| 47 |
+
data_dict['pc_normal'] = self.data[idx]['pc_normal']
|
| 48 |
+
# normalize pc coor
|
| 49 |
+
pc_coor = data_dict['pc_normal'][:, :3]
|
| 50 |
+
normals = data_dict['pc_normal'][:, 3:]
|
| 51 |
+
bounds = np.array([pc_coor.min(axis=0), pc_coor.max(axis=0)])
|
| 52 |
+
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
|
| 53 |
+
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995
|
| 54 |
+
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
|
| 55 |
+
data_dict['pc_normal'] = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
|
| 56 |
+
data_dict['uid'] = self.data[idx]['uid']
|
| 57 |
+
|
| 58 |
+
return data_dict
|
| 59 |
+
|
| 60 |
+
def get_args():
|
| 61 |
+
parser = argparse.ArgumentParser("MeshAnything", add_help=False)
|
| 62 |
+
|
| 63 |
+
parser.add_argument('--llm', default="facebook/opt-350m", type=str)
|
| 64 |
+
parser.add_argument('--input_dir', default=None, type=str)
|
| 65 |
+
parser.add_argument('--input_path', default=None, type=str)
|
| 66 |
+
|
| 67 |
+
parser.add_argument('--out_dir', default="inference_out", type=str)
|
| 68 |
+
parser.add_argument('--pretrained_weights', default="MeshAnything_350m.pth", type=str)
|
| 69 |
+
|
| 70 |
+
parser.add_argument(
|
| 71 |
+
'--input_type',
|
| 72 |
+
choices=['mesh','pc_normal'],
|
| 73 |
+
default='pc',
|
| 74 |
+
help="Type of the asset to process (default: pc)"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
parser.add_argument("--codebook_size", default=8192, type=int)
|
| 78 |
+
parser.add_argument("--codebook_dim", default=1024, type=int)
|
| 79 |
+
|
| 80 |
+
parser.add_argument("--n_max_triangles", default=800, type=int)
|
| 81 |
+
|
| 82 |
+
parser.add_argument("--batchsize_per_gpu", default=1, type=int)
|
| 83 |
+
parser.add_argument("--seed", default=0, type=int)
|
| 84 |
+
|
| 85 |
+
parser.add_argument("--mc", default=False, action="store_true")
|
| 86 |
+
parser.add_argument("--sampling", default=False, action="store_true")
|
| 87 |
+
|
| 88 |
+
args = parser.parse_args()
|
| 89 |
+
return args
|
| 90 |
+
|
| 91 |
+
def load_model(args):
|
| 92 |
+
model = MeshAnything(args)
|
| 93 |
+
print("load model over!!!")
|
| 94 |
+
|
| 95 |
+
ckpt_path = hf_hub_download(
|
| 96 |
+
repo_id="Yiwen-ntu/MeshAnything",
|
| 97 |
+
filename="MeshAnything_350m.pth",
|
| 98 |
+
)
|
| 99 |
+
tensors = {}
|
| 100 |
+
with safe_open(ckpt_path, framework="pt", device=0) as f:
|
| 101 |
+
for k in f.keys():
|
| 102 |
+
tensors[k] = f.get_tensor(k)
|
| 103 |
+
|
| 104 |
+
model.load_state_dict(tensors, strict=True)
|
| 105 |
+
print("load weights over!!!")
|
| 106 |
+
return model
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
args = get_args()
|
| 109 |
+
|
| 110 |
+
cur_time = datetime.datetime.now().strftime("%d_%H-%M-%S")
|
| 111 |
+
checkpoint_dir = os.path.join(args.out_dir, cur_time)
|
| 112 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 113 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
| 114 |
+
accelerator = Accelerator(
|
| 115 |
+
mixed_precision="fp16",
|
| 116 |
+
project_dir=checkpoint_dir,
|
| 117 |
+
kwargs_handlers=[kwargs]
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
model = load_model(args)
|
| 121 |
+
# create dataset
|
| 122 |
+
if args.input_dir is not None:
|
| 123 |
+
input_list = sorted(os.listdir(args.input_dir))
|
| 124 |
+
# only ply, obj or npy
|
| 125 |
+
if args.input_type == 'pc_normal':
|
| 126 |
+
input_list = [os.path.join(args.input_dir, x) for x in input_list if x.endswith('.npy')]
|
| 127 |
+
else:
|
| 128 |
+
input_list = [os.path.join(args.input_dir, x) for x in input_list if x.endswith('.ply') or x.endswith('.obj') or x.endswith('.npy')]
|
| 129 |
+
set_seed(args.seed)
|
| 130 |
+
dataset = Dataset(args.input_type, input_list, args.mc)
|
| 131 |
+
elif args.input_path is not None:
|
| 132 |
+
set_seed(args.seed)
|
| 133 |
+
dataset = Dataset(args.input_type, [args.input_path], args.mc)
|
| 134 |
+
else:
|
| 135 |
+
raise ValueError("input_dir or input_path must be provided.")
|
| 136 |
+
|
| 137 |
+
dataloader = torch.utils.data.DataLoader(
|
| 138 |
+
dataset,
|
| 139 |
+
batch_size=args.batchsize_per_gpu,
|
| 140 |
+
drop_last = False,
|
| 141 |
+
shuffle = False,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
if accelerator.state.num_processes > 1:
|
| 145 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
| 146 |
+
dataloader, model = accelerator.prepare(dataloader, model)
|
| 147 |
+
begin_time = time.time()
|
| 148 |
+
print("Generation Start!!!")
|
| 149 |
+
with accelerator.autocast():
|
| 150 |
+
for curr_iter, batch_data_label in enumerate(dataloader):
|
| 151 |
+
curr_time = time.time()
|
| 152 |
+
outputs = model(batch_data_label['pc_normal'], sampling=args.sampling)
|
| 153 |
+
batch_size = outputs.shape[0]
|
| 154 |
+
device = outputs.device
|
| 155 |
+
|
| 156 |
+
for batch_id in range(batch_size):
|
| 157 |
+
recon_mesh = outputs[batch_id]
|
| 158 |
+
recon_mesh = recon_mesh[~torch.isnan(recon_mesh[:, 0, 0])] # nvalid_face x 3 x 3
|
| 159 |
+
vertices = recon_mesh.reshape(-1, 3).cpu()
|
| 160 |
+
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
|
| 161 |
+
triangles = vertices_index.reshape(-1, 3)
|
| 162 |
+
|
| 163 |
+
scene_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
|
| 164 |
+
merge_primitives=True)
|
| 165 |
+
scene_mesh.merge_vertices()
|
| 166 |
+
scene_mesh.update_faces(scene_mesh.unique_faces())
|
| 167 |
+
scene_mesh.fix_normals()
|
| 168 |
+
save_path = os.path.join(checkpoint_dir, f'{batch_data_label["uid"][batch_id]}_gen.obj')
|
| 169 |
+
num_faces = len(scene_mesh.faces)
|
| 170 |
+
brown_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
| 171 |
+
face_colors = np.tile(brown_color, (num_faces, 1))
|
| 172 |
+
|
| 173 |
+
scene_mesh.visual.face_colors = face_colors
|
| 174 |
+
scene_mesh.export(save_path)
|
| 175 |
+
print(f"{save_path} Over!!")
|
| 176 |
+
end_time = time.time()
|
| 177 |
+
print(f"Total time: {end_time - begin_time}")
|
mesh_to_pc.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import mesh2sdf.core
|
| 2 |
+
import numpy as np
|
| 3 |
+
import skimage.measure
|
| 4 |
+
import trimesh
|
| 5 |
+
|
| 6 |
+
def normalize_vertices(vertices, scale=0.9):
|
| 7 |
+
bbmin, bbmax = vertices.min(0), vertices.max(0)
|
| 8 |
+
center = (bbmin + bbmax) * 0.5
|
| 9 |
+
scale = 2.0 * scale / (bbmax - bbmin).max()
|
| 10 |
+
vertices = (vertices - center) * scale
|
| 11 |
+
return vertices, center, scale
|
| 12 |
+
|
| 13 |
+
def export_to_watertight(normalized_mesh, octree_depth: int = 7):
|
| 14 |
+
"""
|
| 15 |
+
Convert the non-watertight mesh to watertight.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
input_path (str): normalized path
|
| 19 |
+
octree_depth (int):
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
mesh(trimesh.Trimesh): watertight mesh
|
| 23 |
+
|
| 24 |
+
"""
|
| 25 |
+
size = 2 ** octree_depth
|
| 26 |
+
level = 2 / size
|
| 27 |
+
|
| 28 |
+
scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices)
|
| 29 |
+
|
| 30 |
+
sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size)
|
| 31 |
+
|
| 32 |
+
vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level)
|
| 33 |
+
|
| 34 |
+
# watertight mesh
|
| 35 |
+
vertices = vertices / size * 2 - 1 # -1 to 1
|
| 36 |
+
vertices = vertices / to_orig_scale + to_orig_center
|
| 37 |
+
# vertices = vertices / to_orig_scale + to_orig_center
|
| 38 |
+
mesh = trimesh.Trimesh(vertices, faces, normals=normals)
|
| 39 |
+
|
| 40 |
+
return mesh
|
| 41 |
+
|
| 42 |
+
def process_mesh_to_pc(mesh_list, marching_cubes = False, sample_num = 4096):
|
| 43 |
+
# mesh_list : list of trimesh
|
| 44 |
+
pc_normal_list = []
|
| 45 |
+
return_mesh_list = []
|
| 46 |
+
for mesh in mesh_list:
|
| 47 |
+
if marching_cubes:
|
| 48 |
+
mesh = export_to_watertight(mesh)
|
| 49 |
+
print("MC over!")
|
| 50 |
+
return_mesh_list.append(mesh)
|
| 51 |
+
points, face_idx = mesh.sample(sample_num, return_index=True)
|
| 52 |
+
normals = mesh.face_normals[face_idx]
|
| 53 |
+
|
| 54 |
+
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16)
|
| 55 |
+
pc_normal_list.append(pc_normal)
|
| 56 |
+
print("process mesh success")
|
| 57 |
+
return pc_normal_list, return_mesh_list
|
| 58 |
+
|