Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,812 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
import re
|
| 5 |
-
import os
|
| 6 |
import pandas as pd
|
| 7 |
from PIL import Image
|
| 8 |
import time
|
| 9 |
-
import requests
|
| 10 |
-
import json
|
| 11 |
from paddleocr import PaddleOCR, draw_ocr
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Konfigurasi Streamlit
|
| 18 |
st.set_page_config(
|
| 19 |
-
page_title="Nutri-Grade
|
| 20 |
-
page_icon="
|
| 21 |
-
layout="
|
| 22 |
-
initial_sidebar_state="
|
| 23 |
)
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
st.
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
st.markdown("""
|
| 43 |
-
1. Aplikasi ini masih dalam Pengembangan.
|
| 44 |
-
2. Hasil ekstraksi hanya sebagai gambaran; silakan koreksi bila diperlukan.
|
| 45 |
-
3. Hosting gratisan, jadi mungkin ada beberapa kendala.
|
| 46 |
-
4. Kode dapat diakses di Hugging Face untuk kontribusi atau feedback.
|
| 47 |
-
5. Referensi: [Health Promotion Board Singapura](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf)
|
| 48 |
-
""")
|
| 49 |
|
| 50 |
-
# Cache untuk inisialisasi OCR model
|
| 51 |
@st.cache_resource
|
| 52 |
-
def
|
| 53 |
-
"""
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
except Exception as e2:
|
| 69 |
-
st.error(f"Gagal inisialisasi OCR: {e2}")
|
| 70 |
-
return None, f"Error: {e2}"
|
| 71 |
-
|
| 72 |
-
# Fungsi untuk membersihkan nilai numerik
|
| 73 |
-
def parse_numeric_value(text):
|
| 74 |
-
"""Parse nilai numerik dari string (contoh: '15g' → 15.0)"""
|
| 75 |
-
if not text:
|
| 76 |
-
return 0.0
|
| 77 |
-
|
| 78 |
-
# Hapus semua karakter non-digit kecuali titik dan minus
|
| 79 |
-
cleaned = re.sub(r"[^\d\.\-]", "", str(text))
|
| 80 |
-
|
| 81 |
-
# Handle kasus khusus
|
| 82 |
-
if not cleaned or cleaned == "." or cleaned == "-":
|
| 83 |
return 0.0
|
| 84 |
-
|
|
|
|
| 85 |
try:
|
| 86 |
return float(cleaned)
|
| 87 |
except (ValueError, TypeError):
|
| 88 |
return 0.0
|
| 89 |
|
| 90 |
-
|
| 91 |
-
def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
|
| 92 |
-
"""Mendapatkan saran nutrisi dari Qwen melalui OpenRouter API"""
|
| 93 |
-
|
| 94 |
-
nutrition_prompt = f"""
|
| 95 |
-
Anda adalah ahli gizi yang ramah, komunikatif, dan berpengalaman.
|
| 96 |
-
Data nutrisi:
|
| 97 |
-
- Takaran saji: {serving_size} g/ml
|
| 98 |
-
- Kandungan Gula (per 100 g/ml): {sugar_norm:.2f} g
|
| 99 |
-
- Kandungan Lemak Jenuh (per 100 g/ml): {fat_norm:.2f} g
|
| 100 |
-
- Grade Gula: {sugar_grade}
|
| 101 |
-
- Grade Lemak Jenuh: {fat_grade}
|
| 102 |
-
- Grade Akhir: {final_grade}
|
| 103 |
-
|
| 104 |
-
Berdasarkan data tersebut, berikan saran nutrisi yang informatif dalam satu paragraf pendek (50-100 kata).
|
| 105 |
-
Jelaskan secara ringkas dengan mengulang data nutrisi, dampak kesehatannya, dan berikan tips praktis untuk menjaga pola makan seimbang dengan bahasa yang bersahabat.
|
| 106 |
"""
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
}
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
"
|
| 115 |
-
"
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
try:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
json=payload,
|
| 130 |
-
timeout=30
|
| 131 |
)
|
| 132 |
-
|
| 133 |
-
if response.status_code == 200:
|
| 134 |
-
data = response.json()
|
| 135 |
-
return data["choices"][0]["message"]["content"]
|
| 136 |
-
else:
|
| 137 |
-
return f"Error: HTTP {response.status_code} - {response.text}"
|
| 138 |
-
|
| 139 |
-
except requests.exceptions.Timeout:
|
| 140 |
-
return "Error: Request timeout. Silakan coba lagi."
|
| 141 |
-
except requests.exceptions.RequestException as e:
|
| 142 |
-
return f"Error: {str(e)}"
|
| 143 |
except Exception as e:
|
| 144 |
-
return f"
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
# --- STEP 1: Upload Gambar ---
|
| 158 |
-
st.header("📸 Upload Gambar Tabel Gizi")
|
| 159 |
uploaded_file = st.file_uploader(
|
| 160 |
-
"
|
| 161 |
-
type=["jpg", "jpeg", "png"]
|
| 162 |
-
help="Upload gambar tabel gizi untuk dianalisis"
|
| 163 |
)
|
| 164 |
|
| 165 |
if uploaded_file is not None:
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
if
|
| 172 |
-
st.error("
|
| 173 |
st.stop()
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
# --- STEP 2: OCR pada Gambar ---
|
| 185 |
-
st.header("🔍 Proses OCR")
|
| 186 |
-
|
| 187 |
-
if st.button("Mulai Analisis OCR", type="primary"):
|
| 188 |
-
with st.spinner("Melakukan OCR pada gambar..."):
|
| 189 |
-
start_time = time.time()
|
| 190 |
-
try:
|
| 191 |
-
ocr_result = st.session_state.ocr_model.ocr(temp_img_path, cls=True)
|
| 192 |
-
ocr_time = time.time() - start_time
|
| 193 |
-
st.success(f"OCR selesai dalam {ocr_time:.2f} detik")
|
| 194 |
-
|
| 195 |
-
if not ocr_result or not ocr_result[0]:
|
| 196 |
-
st.error("OCR tidak menemukan teks pada gambar!")
|
| 197 |
-
st.stop()
|
| 198 |
-
|
| 199 |
-
# Ekstrak data OCR
|
| 200 |
-
ocr_data = ocr_result[0]
|
| 201 |
-
ocr_list = []
|
| 202 |
-
|
| 203 |
-
for line in ocr_data:
|
| 204 |
-
if len(line) >= 2:
|
| 205 |
-
box = line[0]
|
| 206 |
-
text = line[1][0] if len(line[1]) >= 1 else ""
|
| 207 |
-
score = line[1][1] if len(line[1]) >= 2 else 0.0
|
| 208 |
-
|
| 209 |
-
if box and len(box) >= 4:
|
| 210 |
-
xs = [pt[0] for pt in box]
|
| 211 |
-
ys = [pt[1] for pt in box]
|
| 212 |
-
center_x = sum(xs) / len(xs)
|
| 213 |
-
center_y = sum(ys) / len(ys)
|
| 214 |
-
|
| 215 |
-
ocr_list.append({
|
| 216 |
-
"text": text,
|
| 217 |
-
"box": box,
|
| 218 |
-
"score": score,
|
| 219 |
-
"center_x": center_x,
|
| 220 |
-
"center_y": center_y,
|
| 221 |
-
"height": max(ys) - min(ys)
|
| 222 |
-
})
|
| 223 |
-
|
| 224 |
-
# Sort berdasarkan posisi vertikal
|
| 225 |
-
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
| 226 |
-
|
| 227 |
-
# Target keys untuk ekstraksi
|
| 228 |
-
target_keys = {
|
| 229 |
-
"gula": ["gula", "sugar", "sugars", "total sugar"],
|
| 230 |
-
"takaran saji": ["takaran saji", "serving size", "per serving", "sajian"],
|
| 231 |
-
"lemak jenuh": ["lemak jenuh", "saturated fat", "saturated", "sat fat"]
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
-
extracted = {}
|
| 235 |
-
|
| 236 |
-
# Pass 1: Ekstraksi dengan tanda titik dua
|
| 237 |
-
for item in ocr_list:
|
| 238 |
-
txt_lower = item["text"].lower()
|
| 239 |
-
if ":" in txt_lower:
|
| 240 |
-
parts = txt_lower.split(":")
|
| 241 |
-
if len(parts) >= 2:
|
| 242 |
-
key_candidate = parts[0].strip()
|
| 243 |
-
value_candidate = parts[-1].strip()
|
| 244 |
-
|
| 245 |
-
for canonical, variants in target_keys.items():
|
| 246 |
-
if canonical not in extracted:
|
| 247 |
-
for variant in variants:
|
| 248 |
-
if variant in key_candidate:
|
| 249 |
-
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
| 250 |
-
if clean_value and clean_value not in ["", "."]:
|
| 251 |
-
extracted[canonical.capitalize()] = clean_value
|
| 252 |
-
break
|
| 253 |
-
|
| 254 |
-
# Pass 2: Fallback untuk key yang belum diekstrak
|
| 255 |
-
for item in ocr_list:
|
| 256 |
-
txt_lower = item["text"].lower()
|
| 257 |
-
for canonical, variants in target_keys.items():
|
| 258 |
-
if canonical.capitalize() not in extracted:
|
| 259 |
-
for variant in variants:
|
| 260 |
-
if variant in txt_lower:
|
| 261 |
-
key_center = (item["center_x"], item["center_y"])
|
| 262 |
-
key_height = item["height"]
|
| 263 |
-
best_candidate = None
|
| 264 |
-
min_dx = float('inf')
|
| 265 |
-
|
| 266 |
-
# Cari nilai di sebelah kanan
|
| 267 |
-
for other in ocr_list:
|
| 268 |
-
if other == item:
|
| 269 |
-
continue
|
| 270 |
-
if (other["center_x"] > key_center[0] and
|
| 271 |
-
abs(other["center_y"] - key_center[1]) < 0.5 * key_height):
|
| 272 |
-
dx = other["center_x"] - key_center[0]
|
| 273 |
-
if dx < min_dx:
|
| 274 |
-
min_dx = dx
|
| 275 |
-
best_candidate = other
|
| 276 |
-
|
| 277 |
-
if best_candidate:
|
| 278 |
-
raw_value = best_candidate["text"]
|
| 279 |
-
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
| 280 |
-
if clean_value and clean_value not in ["", "."]:
|
| 281 |
-
extracted[canonical.capitalize()] = clean_value
|
| 282 |
-
break
|
| 283 |
-
|
| 284 |
-
# Tampilkan hasil ekstraksi
|
| 285 |
-
if extracted:
|
| 286 |
-
st.subheader("📊 Hasil Ekstraksi")
|
| 287 |
-
col1, col2 = st.columns(2)
|
| 288 |
-
|
| 289 |
-
with col1:
|
| 290 |
-
st.write("**Data yang ditemukan:**")
|
| 291 |
-
for k, v in extracted.items():
|
| 292 |
-
st.write(f"• {k}: {v}")
|
| 293 |
-
|
| 294 |
-
with col2:
|
| 295 |
-
# Tampilkan gambar dengan bounding box
|
| 296 |
-
try:
|
| 297 |
-
boxes_ocr = [line["box"] for line in ocr_list]
|
| 298 |
-
texts_ocr = [line["text"] for line in ocr_list]
|
| 299 |
-
scores_ocr = [line["score"] for line in ocr_list]
|
| 300 |
-
|
| 301 |
-
# Gunakan font default jika simfang.ttf tidak tersedia
|
| 302 |
-
try:
|
| 303 |
-
im_show = draw_ocr(
|
| 304 |
-
Image.open(temp_img_path).convert("RGB"),
|
| 305 |
-
boxes_ocr, texts_ocr, scores_ocr,
|
| 306 |
-
font_path=None
|
| 307 |
-
)
|
| 308 |
-
except:
|
| 309 |
-
im_show = draw_ocr(
|
| 310 |
-
Image.open(temp_img_path).convert("RGB"),
|
| 311 |
-
boxes_ocr, texts_ocr, scores_ocr
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
im_show = Image.fromarray(im_show)
|
| 315 |
-
st.image(im_show, caption="Hasil OCR", use_column_width=True)
|
| 316 |
-
except Exception as e:
|
| 317 |
-
st.warning(f"Tidak dapat menampilkan bounding box: {e}")
|
| 318 |
-
else:
|
| 319 |
-
st.warning("Tidak ditemukan data nutrisi yang cocok. Silakan input manual.")
|
| 320 |
-
extracted = {}
|
| 321 |
-
|
| 322 |
-
# --- STEP 3: Koreksi Manual ---
|
| 323 |
-
st.header("✏️ Koreksi Data")
|
| 324 |
-
|
| 325 |
-
with st.form("correction_form"):
|
| 326 |
-
st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
|
| 327 |
-
|
| 328 |
-
col1, col2, col3 = st.columns(3)
|
| 329 |
-
|
| 330 |
-
with col1:
|
| 331 |
-
takaran_saji_val = str(parse_numeric_value(
|
| 332 |
-
extracted.get("Takaran saji", "100")
|
| 333 |
-
)) if "Takaran saji" in extracted else "100"
|
| 334 |
-
takaran_saji = st.text_input(
|
| 335 |
-
"Takaran Saji (g/ml)",
|
| 336 |
-
value=takaran_saji_val,
|
| 337 |
-
help="Masukkan takaran saji dalam gram atau ml"
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
with col2:
|
| 341 |
-
gula_val = str(parse_numeric_value(
|
| 342 |
-
extracted.get("Gula", "0")
|
| 343 |
-
)) if "Gula" in extracted else ""
|
| 344 |
-
gula = st.text_input(
|
| 345 |
-
"Gula (g)",
|
| 346 |
-
value=gula_val,
|
| 347 |
-
help="Masukkan kandungan gula dalam gram"
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
with col3:
|
| 351 |
-
lemak_jenuh_val = str(parse_numeric_value(
|
| 352 |
-
extracted.get("Lemak jenuh", "0")
|
| 353 |
-
)) if "Lemak jenuh" in extracted else ""
|
| 354 |
-
lemak_jenuh = st.text_input(
|
| 355 |
-
"Lemak Jenuh (g)",
|
| 356 |
-
value=lemak_jenuh_val,
|
| 357 |
-
help="Masukkan kandungan lemak jenuh dalam gram"
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
submit_button = st.form_submit_button("🧮 Hitung Grade",
|
| 361 |
-
type="primary",
|
| 362 |
-
use_container_width=True)
|
| 363 |
-
|
| 364 |
-
# --- STEP 4: Perhitungan Grade ---
|
| 365 |
-
if submit_button:
|
| 366 |
-
try:
|
| 367 |
-
serving_size = parse_numeric_value(takaran_saji)
|
| 368 |
-
sugar_value = parse_numeric_value(gula)
|
| 369 |
-
fat_value = parse_numeric_value(lemak_jenuh)
|
| 370 |
-
|
| 371 |
-
if serving_size <= 0:
|
| 372 |
-
st.error("Takaran saji harus lebih besar dari 0!")
|
| 373 |
-
st.stop()
|
| 374 |
-
|
| 375 |
-
# Normalisasi ke per 100g/ml
|
| 376 |
-
sugar_norm = (sugar_value / serving_size) * 100
|
| 377 |
-
fat_norm = (fat_value / serving_size) * 100
|
| 378 |
-
|
| 379 |
-
# Tampilkan hasil normalisasi
|
| 380 |
-
st.header("📈 Hasil Analisis")
|
| 381 |
-
|
| 382 |
-
col1, col2 = st.columns(2)
|
| 383 |
-
|
| 384 |
-
with col1:
|
| 385 |
-
st.subheader("📊 Tabel Normalisasi")
|
| 386 |
-
data_tabel = {
|
| 387 |
-
"Nutrisi": ["Gula", "Lemak Jenuh"],
|
| 388 |
-
"Nilai Original": [f"{sugar_value} g", f"{fat_value} g"],
|
| 389 |
-
"Per 100 g/ml": [f"{sugar_norm:.2f} g", f"{fat_norm:.2f} g"]
|
| 390 |
-
}
|
| 391 |
-
df_tabel = pd.DataFrame(data_tabel)
|
| 392 |
-
st.dataframe(df_tabel, use_container_width=True)
|
| 393 |
-
|
| 394 |
-
with col2:
|
| 395 |
-
st.subheader("🎯 Standar Grading")
|
| 396 |
-
st.write("**Gula (per 100g/ml):**")
|
| 397 |
-
st.write("• Grade A: ≤ 1.0 g")
|
| 398 |
-
st.write("• Grade B: ≤ 5.0 g")
|
| 399 |
-
st.write("• Grade C: ≤ 10.0 g")
|
| 400 |
-
st.write("• Grade D: > 10.0 g")
|
| 401 |
-
|
| 402 |
-
st.write("**Lemak Jenuh (per 100g/ml):**")
|
| 403 |
-
st.write("• Grade A: ≤ 0.7 g")
|
| 404 |
-
st.write("• Grade B: ≤ 1.2 g")
|
| 405 |
-
st.write("• Grade C: ≤ 2.8 g")
|
| 406 |
-
st.write("• Grade D: > 2.8 g")
|
| 407 |
-
|
| 408 |
-
# Hitung Grade
|
| 409 |
-
def grade_from_value(value, thresholds):
|
| 410 |
-
if value <= thresholds["A"]:
|
| 411 |
-
return "Grade A"
|
| 412 |
-
elif value <= thresholds["B"]:
|
| 413 |
-
return "Grade B"
|
| 414 |
-
elif value <= thresholds["C"]:
|
| 415 |
-
return "Grade C"
|
| 416 |
-
else:
|
| 417 |
-
return "Grade D"
|
| 418 |
-
|
| 419 |
-
thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
|
| 420 |
-
thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
|
| 421 |
-
|
| 422 |
-
sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
|
| 423 |
-
fat_grade = grade_from_value(fat_norm, thresholds_fat)
|
| 424 |
-
|
| 425 |
-
# Tentukan grade akhir (yang terburuk)
|
| 426 |
-
grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
|
| 427 |
-
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
| 428 |
-
inverse_scores = {v: k for k, v in grade_scores.items()}
|
| 429 |
-
final_grade = inverse_scores[worst_score]
|
| 430 |
-
|
| 431 |
-
# Tampilkan grade dengan warna
|
| 432 |
-
st.subheader("🏆 Hasil Grading")
|
| 433 |
-
|
| 434 |
-
def get_grade_color(grade_text):
|
| 435 |
-
if grade_text == "Grade A":
|
| 436 |
-
return "#2ecc71", "white"
|
| 437 |
-
elif grade_text == "Grade B":
|
| 438 |
-
return "#f1c40f", "black"
|
| 439 |
-
elif grade_text == "Grade C":
|
| 440 |
-
return "#e67e22", "white"
|
| 441 |
-
else:
|
| 442 |
-
return "#e74c3c", "white"
|
| 443 |
-
|
| 444 |
-
col1, col2, col3 = st.columns(3)
|
| 445 |
-
|
| 446 |
-
with col1:
|
| 447 |
-
bg_color, text_color = get_grade_color(sugar_grade)
|
| 448 |
-
st.markdown(f"""
|
| 449 |
-
<div style="
|
| 450 |
-
background-color: {bg_color};
|
| 451 |
-
padding: 15px;
|
| 452 |
-
border-radius: 10px;
|
| 453 |
-
text-align: center;
|
| 454 |
-
color: {text_color};
|
| 455 |
-
font-weight: bold;
|
| 456 |
-
margin: 5px;
|
| 457 |
-
">
|
| 458 |
-
<h4 style="margin: 0; color: {text_color};">Gula</h4>
|
| 459 |
-
<p style="margin: 5px 0; color: {text_color};">{sugar_norm:.2f} g</p>
|
| 460 |
-
<h3 style="margin: 0; color: {text_color};">{sugar_grade}</h3>
|
| 461 |
-
</div>
|
| 462 |
-
""", unsafe_allow_html=True)
|
| 463 |
-
|
| 464 |
-
with col2:
|
| 465 |
-
bg_color, text_color = get_grade_color(fat_grade)
|
| 466 |
-
st.markdown(f"""
|
| 467 |
-
<div style="
|
| 468 |
-
background-color: {bg_color};
|
| 469 |
-
padding: 15px;
|
| 470 |
-
border-radius: 10px;
|
| 471 |
-
text-align: center;
|
| 472 |
-
color: {text_color};
|
| 473 |
-
font-weight: bold;
|
| 474 |
-
margin: 5px;
|
| 475 |
-
">
|
| 476 |
-
<h4 style="margin: 0; color: {text_color};">Lemak Jenuh</h4>
|
| 477 |
-
<p style="margin: 5px 0; color: {text_color};">{fat_norm:.2f} g</p>
|
| 478 |
-
<h3 style="margin: 0; color: {text_color};">{sugar_grade}</h3>
|
| 479 |
-
</div>
|
| 480 |
-
""", unsafe_allow_html=True)
|
| 481 |
-
|
| 482 |
-
with col3:
|
| 483 |
-
bg_color, text_color = get_grade_color(final_grade)
|
| 484 |
-
st.markdown(f"""
|
| 485 |
-
<div style="
|
| 486 |
-
background-color: {bg_color};
|
| 487 |
-
padding: 15px;
|
| 488 |
-
border-radius: 10px;
|
| 489 |
-
text-align: center;
|
| 490 |
-
color: {text_color};
|
| 491 |
-
font-weight: bold;
|
| 492 |
-
margin: 5px;
|
| 493 |
-
border: 3px solid #333;
|
| 494 |
-
">
|
| 495 |
-
<h4 style="margin: 0; color: {text_color};">Grade Akhir</h4>
|
| 496 |
-
<h2 style="margin: 10px 0; color: {text_color};">{final_grade}</h2>
|
| 497 |
-
</div>
|
| 498 |
-
""", unsafe_allow_html=True)
|
| 499 |
-
|
| 500 |
-
# --- STEP 5: Saran Nutrisi dari AI ---
|
| 501 |
-
st.header("🤖 Saran Nutrisi dari AI")
|
| 502 |
-
|
| 503 |
-
with st.spinner("Qwen AI sedang menganalisis data nutrisi Anda..."):
|
| 504 |
-
nutrition_advice = get_nutrition_advice(
|
| 505 |
-
serving_size, sugar_norm, fat_norm,
|
| 506 |
-
sugar_grade, fat_grade, final_grade
|
| 507 |
-
)
|
| 508 |
-
|
| 509 |
-
if nutrition_advice.startswith("Error"):
|
| 510 |
-
st.error(f"Gagal mendapatkan saran nutrisi: {nutrition_advice}")
|
| 511 |
-
st.info("Silakan coba lagi nanti atau hubungi tim pengembang.")
|
| 512 |
-
else:
|
| 513 |
-
st.success("Saran berhasil didapatkan!")
|
| 514 |
-
st.markdown(f"""
|
| 515 |
-
<div style="
|
| 516 |
-
background-color: #f8f9fa;
|
| 517 |
-
padding: 20px;
|
| 518 |
-
border-radius: 10px;
|
| 519 |
-
border-left: 5px solid #007BFF;
|
| 520 |
-
margin: 10px 0;
|
| 521 |
-
">
|
| 522 |
-
<h4>💡 Saran Nutrisi Personal</h4>
|
| 523 |
-
<p style="font-size: 16px; line-height: 1.6;">{nutrition_advice}</p>
|
| 524 |
-
</div>
|
| 525 |
-
""", unsafe_allow_html=True)
|
| 526 |
-
|
| 527 |
-
except Exception as e:
|
| 528 |
-
st.error(f"Terjadi kesalahan dalam perhitungan: {e}")
|
| 529 |
-
st.write("Silakan periksa kembali input data Anda.")
|
| 530 |
-
|
| 531 |
-
except Exception as e:
|
| 532 |
-
st.error(f"Terjadi kesalahan dalam proses OCR: {e}")
|
| 533 |
-
st.write("Silakan coba dengan gambar yang berbeda atau hubungi tim pengembang.")
|
| 534 |
-
|
| 535 |
-
# Cleanup file sementara
|
| 536 |
try:
|
| 537 |
-
|
| 538 |
-
os.remove(temp_img_path)
|
| 539 |
except:
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
st.error(f"Terjadi kesalahan dalam memproses gambar: {e}")
|
| 544 |
|
| 545 |
-
# ---
|
| 546 |
-
st.markdown("---")
|
| 547 |
-
st.
|
| 548 |
-
|
| 549 |
-
<h3 style="color: #007BFF; text-align: center;">👥 Tim Pengembang</h3>
|
| 550 |
-
<div style="display: flex; justify-content: space-around; flex-wrap: wrap;">
|
| 551 |
-
<div style="text-align: center; margin: 10px;">
|
| 552 |
-
<h4>Nicholas Dominic</h4>
|
| 553 |
-
<p><strong>Mentor</strong></p>
|
| 554 |
-
<a href="https://www.linkedin.com/in/nicholas-dominic" target="_blank">
|
| 555 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
| 556 |
-
LinkedIn
|
| 557 |
-
</button>
|
| 558 |
-
</a>
|
| 559 |
-
</div>
|
| 560 |
-
<div style="text-align: center; margin: 10px;">
|
| 561 |
-
<h4>Tata Aditya Pamungkas</h4>
|
| 562 |
-
<p><strong>Machine Learning</strong></p>
|
| 563 |
-
<a href="https://www.linkedin.com/in/tata-aditya-pamungkas" target="_blank">
|
| 564 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
| 565 |
-
LinkedIn
|
| 566 |
-
</button>
|
| 567 |
-
</a>
|
| 568 |
-
</div>
|
| 569 |
-
<div style="text-align: center; margin: 10px;">
|
| 570 |
-
<h4>Raihan Hafiz</h4>
|
| 571 |
-
<p><strong>Web Development</strong></p>
|
| 572 |
-
<a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186" target="_blank">
|
| 573 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
| 574 |
-
LinkedIn
|
| 575 |
-
</button>
|
| 576 |
-
</a>
|
| 577 |
-
</div>
|
| 578 |
-
</div>
|
| 579 |
-
</div>
|
| 580 |
-
""", unsafe_allow_html=True)
|
| 581 |
|
| 582 |
-
with st.
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
- Rekomendasi menu harian yang seimbang
|
| 598 |
-
- Tracking progress dan pencapaian target nutrisi
|
| 599 |
-
|
| 600 |
-
4. **Integrasi AI yang Lebih Canggih**
|
| 601 |
-
- Analisis pola makan pengguna
|
| 602 |
-
- Prediksi risiko kesehatan berdasarkan riwayat konsumsi
|
| 603 |
-
- Chatbot nutrisi untuk konsultasi real-time
|
| 604 |
-
|
| 605 |
-
5. **Fitur Komunitas**
|
| 606 |
-
- Sharing resep makanan sehat
|
| 607 |
-
- Challenge dan kompetisi hidup sehat
|
| 608 |
-
- Forum diskusi dengan ahli gizi
|
| 609 |
-
""")
|
| 610 |
|
| 611 |
-
#
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
st.write("**Gula (per 100g/ml):**")
|
| 623 |
-
st.write("🟢 A: ≤ 1.0g | 🟡 B: ≤ 5.0g")
|
| 624 |
-
st.write("🟠 C: ≤ 10.0g | 🔴 D: > 10.0g")
|
| 625 |
-
|
| 626 |
-
st.write("**Lemak Jenuh (per 100g/ml):**")
|
| 627 |
-
st.write("🟢 A: ≤ 0.7g | 🟡 B: ≤ 1.2g")
|
| 628 |
-
st.write("🟠 C: ≤ 2.8g | 🔴 D: > 2.8g")
|
| 629 |
-
|
| 630 |
-
st.subheader("🔧 Status Sistem")
|
| 631 |
-
if st.session_state.get('ocr_model') is not None:
|
| 632 |
-
st.success("✅ OCR Model: Ready")
|
| 633 |
-
else:
|
| 634 |
-
st.error("❌ OCR Model: Not Ready")
|
| 635 |
-
|
| 636 |
-
st.success("✅ API: Connected")
|
| 637 |
-
st.info("🌐 Hosting: Hugging Face Spaces")
|
| 638 |
-
|
| 639 |
-
st.subheader("📱 Tips Penggunaan")
|
| 640 |
-
st.write("""
|
| 641 |
-
• Pastikan gambar jelas dan tidak buram
|
| 642 |
-
• Tabel gizi harus terlihat dengan baik
|
| 643 |
-
• Hindari gambar dengan pencahayaan buruk
|
| 644 |
-
• Untuk hasil terbaik, gunakan gambar portrait mode
|
| 645 |
-
""")
|
| 646 |
-
|
| 647 |
-
st.subheader("🆘 Bantuan")
|
| 648 |
-
st.write("Jika mengalami masalah:")
|
| 649 |
-
st.write("1. Refresh halaman")
|
| 650 |
-
st.write("2. Coba dengan gambar yang berbeda")
|
| 651 |
-
st.write("3. Hubungi tim pengembang")
|
| 652 |
|
| 653 |
-
#
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
.stButton > button {
|
| 661 |
-
width: 100%;
|
| 662 |
-
border-radius: 10px;
|
| 663 |
-
height: 3em;
|
| 664 |
-
font-weight: bold;
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
-
.stButton > button:hover {
|
| 668 |
-
transform: translateY(-2px);
|
| 669 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
| 670 |
-
transition: all 0.3s ease;
|
| 671 |
-
}
|
| 672 |
-
|
| 673 |
-
.uploadedFile {
|
| 674 |
-
border: 2px dashed #007BFF;
|
| 675 |
-
border-radius: 10px;
|
| 676 |
-
padding: 20px;
|
| 677 |
-
text-align: center;
|
| 678 |
-
margin: 10px 0;
|
| 679 |
-
}
|
| 680 |
-
|
| 681 |
-
.stDataFrame {
|
| 682 |
-
border-radius: 10px;
|
| 683 |
-
overflow: hidden;
|
| 684 |
-
}
|
| 685 |
-
|
| 686 |
-
.stExpander {
|
| 687 |
-
border-radius: 10px;
|
| 688 |
-
border: 1px solid #e0e0e0;
|
| 689 |
-
}
|
| 690 |
-
|
| 691 |
-
.stSuccess, .stError, .stWarning, .stInfo {
|
| 692 |
-
border-radius: 10px;
|
| 693 |
-
padding: 15px;
|
| 694 |
-
margin: 10px 0;
|
| 695 |
-
}
|
| 696 |
-
|
| 697 |
-
.grade-card {
|
| 698 |
-
transition: transform 0.3s ease;
|
| 699 |
-
}
|
| 700 |
-
|
| 701 |
-
.grade-card:hover {
|
| 702 |
-
transform: scale(1.05);
|
| 703 |
-
}
|
| 704 |
-
|
| 705 |
-
/* Responsive design */
|
| 706 |
-
@media (max-width: 768px) {
|
| 707 |
-
.stColumns {
|
| 708 |
-
flex-direction: column;
|
| 709 |
-
}
|
| 710 |
-
|
| 711 |
-
.stButton > button {
|
| 712 |
-
height: 2.5em;
|
| 713 |
-
font-size: 14px;
|
| 714 |
-
}
|
| 715 |
-
}
|
| 716 |
-
|
| 717 |
-
/* Loading animation */
|
| 718 |
-
.stSpinner {
|
| 719 |
-
border-radius: 50%;
|
| 720 |
-
animation: spin 1s linear infinite;
|
| 721 |
-
}
|
| 722 |
-
|
| 723 |
-
@keyframes spin {
|
| 724 |
-
0% { transform: rotate(0deg); }
|
| 725 |
-
100% { transform: rotate(360deg); }
|
| 726 |
-
}
|
| 727 |
-
|
| 728 |
-
/* Custom scrollbar */
|
| 729 |
-
::-webkit-scrollbar {
|
| 730 |
-
width: 8px;
|
| 731 |
-
}
|
| 732 |
-
|
| 733 |
-
::-webkit-scrollbar-track {
|
| 734 |
-
background: #f1f1f1;
|
| 735 |
-
border-radius: 10px;
|
| 736 |
-
}
|
| 737 |
-
|
| 738 |
-
::-webkit-scrollbar-thumb {
|
| 739 |
-
background: #007BFF;
|
| 740 |
-
border-radius: 10px;
|
| 741 |
-
}
|
| 742 |
-
|
| 743 |
-
::-webkit-scrollbar-thumb:hover {
|
| 744 |
-
background: #0056b3;
|
| 745 |
-
}
|
| 746 |
-
</style>
|
| 747 |
-
""", unsafe_allow_html=True)
|
| 748 |
|
| 749 |
-
|
| 750 |
-
st.
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
}
|
| 761 |
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
new Notification(title, {
|
| 767 |
-
body: message,
|
| 768 |
-
icon: "🥗"
|
| 769 |
-
});
|
| 770 |
-
} else if (Notification.permission !== "denied") {
|
| 771 |
-
Notification.requestPermission().then(function (permission) {
|
| 772 |
-
if (permission === "granted") {
|
| 773 |
-
new Notification(title, {
|
| 774 |
-
body: message,
|
| 775 |
-
icon: "🥗"
|
| 776 |
-
});
|
| 777 |
-
}
|
| 778 |
-
});
|
| 779 |
-
}
|
| 780 |
-
}
|
| 781 |
-
}
|
| 782 |
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 791 |
st.markdown("---")
|
|
|
|
|
|
|
| 792 |
st.markdown("""
|
| 793 |
-
<div style="
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
</p>
|
| 799 |
-
<p style="color: #888; font-size: 12px; margin-top: 15px;">
|
| 800 |
-
© 2024 Tim Nutri-Grade | Semua hak dilindungi undang-undang<br>
|
| 801 |
-
<a href="https://huggingface.co/spaces/your-username/nutri-grade" target="_blank" style="color: #007BFF; text-decoration: none;">
|
| 802 |
-
🤗 Hugging Face Repository
|
| 803 |
-
</a> |
|
| 804 |
-
<a href="mailto:[email protected]" style="color: #007BFF; text-decoration: none;">
|
| 805 |
-
📧 Kontak
|
| 806 |
-
</a> |
|
| 807 |
-
<a href="#" style="color: #007BFF; text-decoration: none;">
|
| 808 |
-
📋 Terms of Service
|
| 809 |
-
</a>
|
| 810 |
-
</p>
|
| 811 |
</div>
|
| 812 |
-
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# 1. IMPORT LIBRARY
|
| 3 |
+
# ==============================================================================
|
| 4 |
import streamlit as st
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
import re
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
from PIL import Image
|
| 10 |
import time
|
|
|
|
|
|
|
| 11 |
from paddleocr import PaddleOCR, draw_ocr
|
| 12 |
+
import openai
|
| 13 |
|
| 14 |
+
# ==============================================================================
|
| 15 |
+
# 2. KONFIGURASI APLIKASI
|
| 16 |
+
# ==============================================================================
|
| 17 |
+
# Konfigurasi halaman Streamlit (sebaiknya dipanggil sekali di awal)
|
|
|
|
| 18 |
st.set_page_config(
|
| 19 |
+
page_title="Nutri-Grade Calculator",
|
| 20 |
+
page_icon="🍏",
|
| 21 |
+
layout="centered",
|
| 22 |
+
initial_sidebar_state="auto"
|
| 23 |
)
|
| 24 |
|
| 25 |
+
# --- Konfigurasi Kunci API dan Model ---
|
| 26 |
+
# Menggunakan st.secrets untuk keamanan, jangan hardcode kunci API!
|
| 27 |
+
# Buat file .streamlit/secrets.toml di repo Hugging Face Anda.
|
| 28 |
+
# Isinya:
|
| 29 |
+
OPENAI_API_KEY = "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"
|
| 30 |
+
try:
|
| 31 |
+
openai.api_key = st.secrets["OPENAI_API_KEY"]
|
| 32 |
+
except (KeyError, FileNotFoundError):
|
| 33 |
+
st.error("Kunci API OpenRouter tidak ditemukan. Harap atur di st.secrets.")
|
| 34 |
+
st.stop()
|
| 35 |
|
| 36 |
+
openai.api_base = "https://openrouter.ai/api/v1"
|
| 37 |
+
AI_MODEL_NAME = "qwen/qwen2.5-vl-72b-instruct:free"
|
| 38 |
+
|
| 39 |
+
# --- Variabel Global dan Konstanta ---
|
| 40 |
+
TARGET_KEYS = {
|
| 41 |
+
"gula": ["gula", "sugar"],
|
| 42 |
+
"takaran saji": ["takaran saji", "serving size"],
|
| 43 |
+
"lemak jenuh": ["lemak jenuh", "saturated fat"]
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# ==============================================================================
|
| 47 |
+
# 3. FUNGSI-FUNGSI UTAMA
|
| 48 |
+
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
| 50 |
@st.cache_resource
|
| 51 |
+
def load_ocr_model():
|
| 52 |
+
"""
|
| 53 |
+
Memuat model PaddleOCR dan menyimpannya di cache.
|
| 54 |
+
Menggunakan CPU untuk kompatibilitas yang lebih baik di Hugging Face Spaces.
|
| 55 |
+
"""
|
| 56 |
+
print("Memuat model PaddleOCR...")
|
| 57 |
+
# PENTING: use_gpu=False untuk stabilitas di environment tanpa GPU yang terkonfigurasi.
|
| 58 |
+
# Ini adalah perbaikan utama untuk error 'Failed to parse program_desc'.
|
| 59 |
+
return PaddleOCR(use_gpu=False, lang='id', cls=True)
|
| 60 |
+
|
| 61 |
+
def parse_numeric_value(text: str) -> float:
|
| 62 |
+
"""
|
| 63 |
+
Membersihkan string dan mengubahnya menjadi float.
|
| 64 |
+
Contoh: "15g" -> 15.0 atau "Sekitar 12.5" -> 12.5
|
| 65 |
+
"""
|
| 66 |
+
if not isinstance(text, str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return 0.0
|
| 68 |
+
# Mengambil semua digit, titik, dan tanda minus
|
| 69 |
+
cleaned = re.sub(r"[^\d\.\-]", "", text)
|
| 70 |
try:
|
| 71 |
return float(cleaned)
|
| 72 |
except (ValueError, TypeError):
|
| 73 |
return 0.0
|
| 74 |
|
| 75 |
+
def perform_ocr(image_path: str, ocr_model) -> list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
"""
|
| 77 |
+
Melakukan OCR pada gambar dan mengembalikan hasil dalam format yang terstruktur.
|
| 78 |
+
"""
|
| 79 |
+
if not image_path:
|
| 80 |
+
return []
|
| 81 |
+
|
| 82 |
+
result = ocr_model.ocr(image_path, cls=True)
|
| 83 |
+
if not result or not result[0]:
|
| 84 |
+
return []
|
| 85 |
+
|
| 86 |
+
ocr_list = []
|
| 87 |
+
for line in result[0]:
|
| 88 |
+
box = line[0]
|
| 89 |
+
text, score = line[1]
|
| 90 |
+
xs = [pt[0] for pt in box]
|
| 91 |
+
ys = [pt[1] for pt in box]
|
| 92 |
+
ocr_list.append({
|
| 93 |
+
"text": text,
|
| 94 |
+
"box": box,
|
| 95 |
+
"score": score,
|
| 96 |
+
"center_x": sum(xs) / len(xs),
|
| 97 |
+
"center_y": sum(ys) / len(ys),
|
| 98 |
+
"height": max(ys) - min(ys)
|
| 99 |
+
})
|
| 100 |
+
# Urutkan berdasarkan posisi vertikal (atas ke bawah)
|
| 101 |
+
return sorted(ocr_list, key=lambda x: x["center_y"])
|
| 102 |
+
|
| 103 |
+
def extract_key_values(ocr_data: list, target_keys: dict) -> dict:
|
| 104 |
+
"""
|
| 105 |
+
Mengekstrak pasangan key-value dari data OCR yang telah diproses.
|
| 106 |
+
"""
|
| 107 |
+
extracted = {}
|
| 108 |
+
|
| 109 |
+
# Pass 1: Mencari key yang diikuti oleh titik dua (contoh: "Gula: 10g")
|
| 110 |
+
for item in ocr_data:
|
| 111 |
+
txt_lower = item["text"].lower()
|
| 112 |
+
if ":" in txt_lower:
|
| 113 |
+
parts = txt_lower.split(":", 1)
|
| 114 |
+
key_candidate, value_candidate = parts[0].strip(), parts[1].strip()
|
| 115 |
+
|
| 116 |
+
for canonical, variants in target_keys.items():
|
| 117 |
+
if canonical.capitalize() not in extracted:
|
| 118 |
+
for variant in variants:
|
| 119 |
+
if variant in key_candidate:
|
| 120 |
+
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
| 121 |
+
if clean_value and clean_value != ".":
|
| 122 |
+
extracted[canonical.capitalize()] = clean_value
|
| 123 |
+
break
|
| 124 |
+
|
| 125 |
+
# Pass 2: Fallback, mencari nilai yang paling dekat di sebelah kanan key
|
| 126 |
+
for item in ocr_data:
|
| 127 |
+
txt_lower = item["text"].lower()
|
| 128 |
+
for canonical, variants in target_keys.items():
|
| 129 |
+
if canonical.capitalize() not in extracted:
|
| 130 |
+
for variant in variants:
|
| 131 |
+
if variant in txt_lower:
|
| 132 |
+
key_center_y, key_center_x, key_height = item["center_y"], item["center_x"], item["height"]
|
| 133 |
+
best_candidate = None
|
| 134 |
+
min_horizontal_dist = float('inf')
|
| 135 |
+
|
| 136 |
+
for other in ocr_data:
|
| 137 |
+
# Cari kandidat di sebelah kanan dan sejajar secara vertikal
|
| 138 |
+
is_aligned_y = abs(other["center_y"] - key_center_y) < key_height * 0.75
|
| 139 |
+
is_to_the_right = other["center_x"] > key_center_x
|
| 140 |
+
|
| 141 |
+
if item != other and is_aligned_y and is_to_the_right:
|
| 142 |
+
horizontal_dist = other["center_x"] - key_center_x
|
| 143 |
+
if horizontal_dist < min_horizontal_dist:
|
| 144 |
+
min_horizontal_dist = horizontal_dist
|
| 145 |
+
best_candidate = other
|
| 146 |
+
|
| 147 |
+
if best_candidate:
|
| 148 |
+
raw_value = best_candidate["text"]
|
| 149 |
+
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
| 150 |
+
if clean_value and clean_value != ".":
|
| 151 |
+
extracted[canonical.capitalize()] = clean_value
|
| 152 |
+
break # Pindah ke canonical key berikutnya
|
| 153 |
+
return extracted
|
| 154 |
+
|
| 155 |
+
def calculate_final_grade(sugar_norm: float, fat_norm: float) -> (str, str, str):
|
| 156 |
+
"""
|
| 157 |
+
Menghitung grade untuk gula, lemak jenuh, dan grade akhir.
|
| 158 |
+
"""
|
| 159 |
+
thresholds = {
|
| 160 |
+
"sugar": {"A": 1.0, "B": 5.0, "C": 10.0},
|
| 161 |
+
"fat": {"A": 0.7, "B": 1.2, "C": 2.8}
|
| 162 |
}
|
| 163 |
+
grade_scores = {"A": 1, "B": 2, "C": 3, "D": 4}
|
| 164 |
|
| 165 |
+
def get_grade(value, nutrient_type):
|
| 166 |
+
if value <= thresholds[nutrient_type]["A"]: return "A"
|
| 167 |
+
if value <= thresholds[nutrient_type]["B"]: return "B"
|
| 168 |
+
if value <= thresholds[nutrient_type]["C"]: return "C"
|
| 169 |
+
return "D"
|
| 170 |
+
|
| 171 |
+
sugar_grade = get_grade(sugar_norm, "sugar")
|
| 172 |
+
fat_grade = get_grade(fat_norm, "fat")
|
| 173 |
+
|
| 174 |
+
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
| 175 |
+
final_grade = next(grade for grade, score in grade_scores.items() if score == worst_score)
|
| 176 |
|
| 177 |
+
return f"Grade {sugar_grade}", f"Grade {fat_grade}", f"Grade {final_grade}"
|
| 178 |
+
|
| 179 |
+
def generate_nutrition_advice(data: dict) -> str:
|
| 180 |
+
"""
|
| 181 |
+
Membuat prompt dan memanggil API LLM untuk mendapatkan saran nutrisi.
|
| 182 |
+
"""
|
| 183 |
+
nutrition_prompt = f"""
|
| 184 |
+
Anda adalah seorang ahli gizi dari Indonesia yang ramah, komunikatif, dan berpengalaman.
|
| 185 |
+
Berikut adalah data nutrisi sebuah produk makanan:
|
| 186 |
+
- Takaran Saji: {data['serving_size']:.2f} g/ml
|
| 187 |
+
- Kandungan Gula (setelah normalisasi per 100g): {data['sugar_norm']:.2f} g
|
| 188 |
+
- Kandungan Lemak Jenuh (setelah normalisasi per 100g): {data['fat_norm']:.2f} g
|
| 189 |
+
- Grade Gula: {data['sugar_grade']}
|
| 190 |
+
- Grade Lemak Jenuh: {data['fat_grade']}
|
| 191 |
+
- Grade Akhir Produk: {data['final_grade']}
|
| 192 |
+
|
| 193 |
+
Tugas Anda:
|
| 194 |
+
Berikan saran nutrisi yang informatif dalam satu paragraf pendek (sekitar 50-100 kata).
|
| 195 |
+
Gunakan bahasa yang bersahabat dan mudah dimengerti. Jelaskan secara ringkas arti dari data nutrisi di atas,
|
| 196 |
+
dampak kesehatan terkait, dan berikan tips praktis untuk menjaga pola makan seimbang.
|
| 197 |
+
"""
|
| 198 |
+
st.write("Tunggu sebentar, Qwen si AI nutritionist sedang memproses penjelasannya... 🤖")
|
| 199 |
try:
|
| 200 |
+
completion = openai.ChatCompletion.create(
|
| 201 |
+
model=AI_MODEL_NAME,
|
| 202 |
+
messages=[{"role": "user", "content": nutrition_prompt}]
|
|
|
|
|
|
|
| 203 |
)
|
| 204 |
+
return completion.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
except Exception as e:
|
| 206 |
+
return f"Gagal mendapatkan saran dari Qwen: {e}"
|
| 207 |
+
|
| 208 |
+
def display_colored_grade(grade_text: str):
|
| 209 |
+
"""
|
| 210 |
+
Menampilkan grade akhir dengan warna latar yang sesuai.
|
| 211 |
+
"""
|
| 212 |
+
color_map = {
|
| 213 |
+
"Grade A": "#2ecc71", # Hijau
|
| 214 |
+
"Grade B": "#f1c40f", # Kuning
|
| 215 |
+
"Grade C": "#e67e22", # Oranye
|
| 216 |
+
"Grade D": "#e74c3c" # Merah
|
| 217 |
+
}
|
| 218 |
+
bg_color = color_map.get(grade_text, "#7f8c8d") # Default abu-abu
|
| 219 |
+
|
| 220 |
+
html_code = f"""
|
| 221 |
+
<div style="
|
| 222 |
+
background-color: {bg_color};
|
| 223 |
+
padding: 15px;
|
| 224 |
+
border-radius: 8px;
|
| 225 |
+
margin-top: 10px;
|
| 226 |
+
font-weight: bold;
|
| 227 |
+
color: white;
|
| 228 |
+
text-align: center;
|
| 229 |
+
font-size: 20px;
|
| 230 |
+
">
|
| 231 |
+
{grade_text}
|
| 232 |
+
</div>
|
| 233 |
+
"""
|
| 234 |
+
st.markdown(html_code, unsafe_allow_html=True)
|
| 235 |
+
|
| 236 |
+
# ==============================================================================
|
| 237 |
+
# 4. TAMPILAN ANTARMUKA (USER INTERFACE)
|
| 238 |
+
# ==============================================================================
|
| 239 |
+
|
| 240 |
+
# --- Judul dan Deskripsi ---
|
| 241 |
+
st.title("🍏 Nutri-Grade Label & Grade Calculator")
|
| 242 |
+
st.caption("Aplikasi prototipe untuk menganalisis dan memberi grade pada label nutrisi produk, terinspirasi oleh Nutri-Grade Singapura. Refresh halaman jika terjadi masalah.")
|
| 243 |
+
|
| 244 |
+
# --- Petunjuk Penggunaan dan Info ---
|
| 245 |
+
with st.expander("Petunjuk Penggunaan 📝"):
|
| 246 |
+
st.markdown("""
|
| 247 |
+
1. **Upload Gambar**: Unggah gambar tabel gizi produk. Jika dari ponsel, Anda bisa langsung menggunakan kamera.
|
| 248 |
+
2. **Deteksi Teks (OCR)**: Sistem akan secara otomatis mendeteksi teks dan angka pada gambar.
|
| 249 |
+
3. **Koreksi Manual**: Periksa hasil deteksi. Jika ada yang kurang tepat, Anda bisa memperbaikinya di formulir.
|
| 250 |
+
4. **Hitung Grade**: Klik tombol "Hitung" untuk melihat hasil analisis, grade, dan saran nutrisi.
|
| 251 |
+
""")
|
| 252 |
+
|
| 253 |
+
with st.expander("⚠️ Harap Diperhatikan"):
|
| 254 |
+
st.markdown("""
|
| 255 |
+
- Aplikasi ini masih dalam tahap **pengembangan (prototipe)**.
|
| 256 |
+
- Hasil ekstraksi otomatis mungkin tidak 100% akurat. **Selalu verifikasi dengan label fisik**.
|
| 257 |
+
- Dijalankan pada server gratis, mohon maaf jika terkadang lambat atau mengalami kendala.
|
| 258 |
+
- Kode sumber tersedia di [Hugging Face](https://huggingface.co/spaces/tataaditya/nutri-grade). Kontribusi dan feedback sangat kami hargai.
|
| 259 |
+
- Referensi utama: [Health Promotion Board Singapore](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf).
|
| 260 |
+
""")
|
| 261 |
+
|
| 262 |
+
# --- Inisialisasi Model OCR ---
|
| 263 |
+
ocr_model = load_ocr_model()
|
| 264 |
|
| 265 |
# --- STEP 1: Upload Gambar ---
|
|
|
|
| 266 |
uploaded_file = st.file_uploader(
|
| 267 |
+
"Upload gambar tabel gizi di sini (JPG/PNG)",
|
| 268 |
+
type=["jpg", "jpeg", "png"]
|
|
|
|
| 269 |
)
|
| 270 |
|
| 271 |
if uploaded_file is not None:
|
| 272 |
+
# Menggunakan session state untuk menyimpan hasil agar tidak perlu diulang
|
| 273 |
+
if 'last_uploaded_file' not in st.session_state or st.session_state.last_uploaded_file != uploaded_file.name:
|
| 274 |
+
st.session_state.last_uploaded_file = uploaded_file.name
|
| 275 |
+
st.session_state.ocr_data = None
|
| 276 |
+
st.session_state.extracted_data = {}
|
| 277 |
+
|
| 278 |
+
# Konversi dan tampilkan gambar
|
| 279 |
+
image_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 280 |
+
img = cv2.imdecode(image_bytes, 1)
|
| 281 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 282 |
+
st.image(img_rgb, caption="Gambar yang diunggah", use_column_width=True)
|
| 283 |
+
|
| 284 |
+
# Simpan gambar sementara untuk diproses OCR
|
| 285 |
+
img_path = "uploaded_image.jpg"
|
| 286 |
+
cv2.imwrite(img_path, img)
|
| 287 |
+
|
| 288 |
+
# --- STEP 2: Proses OCR (hanya jika belum ada datanya) ---
|
| 289 |
+
if st.session_state.ocr_data is None:
|
| 290 |
+
with st.spinner("Membaca teks dari gambar... Ini mungkin memakan waktu beberapa detik."):
|
| 291 |
+
start_time = time.time()
|
| 292 |
+
st.session_state.ocr_data = perform_ocr(img_path, ocr_model)
|
| 293 |
+
ocr_time = time.time() - start_time
|
| 294 |
|
| 295 |
+
if not st.session_state.ocr_data:
|
| 296 |
+
st.error("OCR tidak dapat menemukan teks apapun pada gambar. Coba gambar yang lebih jelas.")
|
| 297 |
st.stop()
|
| 298 |
+
else:
|
| 299 |
+
st.success(f"OCR berhasil! Ditemukan {len(st.session_state.ocr_data)} baris teks dalam {ocr_time:.2f} detik.")
|
| 300 |
+
st.session_state.extracted_data = extract_key_values(st.session_state.ocr_data, TARGET_KEYS)
|
| 301 |
+
|
| 302 |
+
# Tampilkan hasil OCR dengan bounding box untuk referensi
|
| 303 |
+
with st.expander("Lihat Hasil Deteksi Teks (OCR)"):
|
| 304 |
+
boxes_ocr = [line["box"] for line in st.session_state.ocr_data]
|
| 305 |
+
texts_ocr = [line["text"] for line in st.session_state.ocr_data]
|
| 306 |
+
scores_ocr = [line["score"] for line in st.session_state.ocr_data]
|
| 307 |
+
# Gunakan font default jika simfang tidak ada
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
try:
|
| 309 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
|
|
|
|
| 310 |
except:
|
| 311 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr)
|
| 312 |
+
im_show = Image.fromarray(im_show)
|
| 313 |
+
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
|
|
|
| 314 |
|
| 315 |
+
# --- STEP 3: Koreksi Manual ---
|
| 316 |
+
st.markdown("---")
|
| 317 |
+
st.subheader("Verifikasi & Koreksi Data")
|
| 318 |
+
st.info("Periksa dan koreksi nilai yang diekstrak jika perlu. Masukkan **hanya angka** (gunakan titik untuk desimal).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
with st.form("correction_form"):
|
| 321 |
+
corrected_data = {}
|
| 322 |
+
# Ambil nilai dari session state sebagai default
|
| 323 |
+
extracted_data = st.session_state.extracted_data
|
| 324 |
+
|
| 325 |
+
for key in TARGET_KEYS.keys():
|
| 326 |
+
key_cap = key.capitalize()
|
| 327 |
+
# Ambil nilai yang sudah diekstrak, jika tidak ada, biarkan kosong
|
| 328 |
+
default_val = extracted_data.get(key_cap, "")
|
| 329 |
+
corrected_data[key_cap] = st.text_input(
|
| 330 |
+
label=f"**{key_cap}** (angka saja)",
|
| 331 |
+
value=default_val
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
submit_button = st.form_submit_button("✅ Hitung Grade & Dapatkan Saran")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
+
# --- STEP 4: Kalkulasi dan Tampilan Hasil ---
|
| 337 |
+
if submit_button:
|
| 338 |
+
try:
|
| 339 |
+
# Ambil nilai dari form yang sudah dikoreksi
|
| 340 |
+
serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
|
| 341 |
+
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
| 342 |
+
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
| 343 |
+
|
| 344 |
+
if serving_size <= 0:
|
| 345 |
+
st.error("Takaran Saji harus lebih besar dari nol untuk melakukan normalisasi.")
|
| 346 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
+
# Normalisasi ke per 100g/ml
|
| 349 |
+
sugar_norm = (sugar_value / serving_size) * 100
|
| 350 |
+
fat_norm = (fat_value / serving_size) * 100
|
| 351 |
+
|
| 352 |
+
# Hitung Grade
|
| 353 |
+
sugar_grade, fat_grade, final_grade = calculate_final_grade(sugar_norm, fat_norm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
+
st.markdown("---")
|
| 356 |
+
st.subheader("Hasil Analisis Nutrisi")
|
| 357 |
+
|
| 358 |
+
col1, col2 = st.columns(2)
|
| 359 |
+
with col1:
|
| 360 |
+
st.write("**Hasil Normalisasi per 100 g/ml**")
|
| 361 |
+
df_tabel = pd.DataFrame({
|
| 362 |
+
"Nutrisi": ["Gula Total", "Lemak Jenuh"],
|
| 363 |
+
"Nilai (per 100 g/ml)": [f"{sugar_norm:.2f} g", f"{fat_norm:.2f} g"]
|
| 364 |
+
})
|
| 365 |
+
st.table(df_tabel)
|
|
|
|
| 366 |
|
| 367 |
+
with col2:
|
| 368 |
+
st.write("**Hasil Penilaian Grade**")
|
| 369 |
+
st.metric(label="Grade Gula", value=sugar_grade)
|
| 370 |
+
st.metric(label="Grade Lemak Jenuh", value=fat_grade)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
+
st.write("**Grade Akhir Produk**")
|
| 373 |
+
display_colored_grade(final_grade)
|
| 374 |
+
|
| 375 |
+
st.markdown("---")
|
| 376 |
+
st.subheader("Saran dari Ahli Gizi AI")
|
| 377 |
+
|
| 378 |
+
advice_data = {
|
| 379 |
+
"serving_size": serving_size, "sugar_norm": sugar_norm, "fat_norm": fat_norm,
|
| 380 |
+
"sugar_grade": sugar_grade, "fat_grade": fat_grade, "final_grade": final_grade
|
| 381 |
+
}
|
| 382 |
+
nutrition_advice = generate_nutrition_advice(advice_data)
|
| 383 |
+
st.success(nutrition_advice)
|
| 384 |
|
| 385 |
+
except Exception as e:
|
| 386 |
+
st.error(f"Terjadi kesalahan saat perhitungan: {e}")
|
| 387 |
+
|
| 388 |
+
# ==============================================================================
|
| 389 |
+
# 5. FOOTER
|
| 390 |
+
# ==============================================================================
|
| 391 |
st.markdown("---")
|
| 392 |
+
|
| 393 |
+
# --- Tampilan Tim Pengembang ---
|
| 394 |
st.markdown("""
|
| 395 |
+
<div style="border: 1px solid #dfe6e9; padding: 15px; border-radius: 10px; margin-top: 20px; background-color: #fafafa;">
|
| 396 |
+
<h4 style="text-align: center; color: #007BFF;">Tim Pengembang</h4>
|
| 397 |
+
<p><strong>Nicholas Dominic</strong>, Mentor - <a href="https://www.linkedin.com/in/nicholas-dominic" target="_blank">LinkedIn</a></p>
|
| 398 |
+
<p><strong>Tata Aditya Pamungkas</strong>, Machine Learning - <a href="https://www.linkedin.com/in/tata-aditya-pamungkas" target="_blank">LinkedIn</a></p>
|
| 399 |
+
<p><strong>Raihan Hafiz</strong>, Web Dev - <a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186" target="_blank">LinkedIn</a></p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
</div>
|
| 401 |
+
""", unsafe_allow_html=True)
|
| 402 |
+
|
| 403 |
+
with st.expander("Rencana Pengembangan & Inovasi Selanjutnya 🚀"):
|
| 404 |
+
st.markdown("""
|
| 405 |
+
1. **Infrastruktur yang Lebih Baik**: Migrasi ke server berbayar untuk meningkatkan kecepatan, stabilitas, dan kapasitas pengguna.
|
| 406 |
+
2. **Fitur Food Recall**: Mengembangkan fitur untuk mencatat asupan makanan harian (*real food*), bukan hanya produk kemasan. Ide ini divalidasi setelah diskusi dengan nutritionist [Firza Marhamah](https://www.linkedin.com/in/firza-marhamah).
|
| 407 |
+
3. **Kalkulator Kalori Harian**: Menambahkan fitur penghitung kebutuhan kalori harian yang dipersonalisasi berdasarkan data pengguna (usia, berat badan, tinggi badan, tingkat aktivitas).
|
| 408 |
+
""")
|