SpatialTrackerV2 / inference.py
xiaoyuxi
support HubMixin
9193cab
import pycolmap
from models.SpaTrackV2.models.predictor import Predictor
import yaml
import easydict
import os
import numpy as np
import cv2
import torch
import torchvision.transforms as T
from PIL import Image
import io
import moviepy.editor as mp
from models.SpaTrackV2.utils.visualizer import Visualizer
import tqdm
from models.SpaTrackV2.models.utils import get_points_on_a_grid
import glob
from rich import print
import argparse
import decord
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image
from models.SpaTrackV2.models.vggt4track.utils.pose_enc import pose_encoding_to_extri_intri
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--track_mode", type=str, default="offline")
parser.add_argument("--data_type", type=str, default="RGBD")
parser.add_argument("--data_dir", type=str, default="assets/example0")
parser.add_argument("--video_name", type=str, default="snowboard")
parser.add_argument("--grid_size", type=int, default=10)
parser.add_argument("--vo_points", type=int, default=756)
parser.add_argument("--fps", type=int, default=1)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
out_dir = args.data_dir + "/results"
# fps
fps = int(args.fps)
mask_dir = args.data_dir + f"/{args.video_name}.png"
vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front")
vggt4track_model.eval()
vggt4track_model = vggt4track_model.to("cuda")
if args.data_type == "RGBD":
npz_dir = args.data_dir + f"/{args.video_name}.npz"
data_npz_load = dict(np.load(npz_dir, allow_pickle=True))
#TODO: tapip format
video_tensor = data_npz_load["video"] * 255
video_tensor = torch.from_numpy(video_tensor)
video_tensor = video_tensor[::fps]
depth_tensor = data_npz_load["depths"]
depth_tensor = depth_tensor[::fps]
intrs = data_npz_load["intrinsics"]
intrs = intrs[::fps]
extrs = np.linalg.inv(data_npz_load["extrinsics"])
extrs = extrs[::fps]
unc_metric = None
elif args.data_type == "RGB":
vid_dir = os.path.join(args.data_dir, f"{args.video_name}.mp4")
video_reader = decord.VideoReader(vid_dir)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W)
video_tensor = video_tensor[::fps].float()
# process the image tensor
video_tensor = preprocess_image(video_tensor)[None]
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
# Predict attributes including cameras, depth maps, and point maps.
predictions = vggt4track_model(video_tensor.cuda()/255)
extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"]
depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"]
depth_tensor = depth_map.squeeze().cpu().numpy()
extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0)
extrs = extrinsic.squeeze().cpu().numpy()
intrs = intrinsic.squeeze().cpu().numpy()
video_tensor = video_tensor.squeeze()
#NOTE: 20% of the depth is not reliable
# threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item()
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5
data_npz_load = {}
if os.path.exists(mask_dir):
mask_files = mask_dir
mask = cv2.imread(mask_files)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].numpy())>0
# get all data pieces
viz = True
os.makedirs(out_dir, exist_ok=True)
# with open(cfg_dir, "r") as f:
# cfg = yaml.load(f, Loader=yaml.FullLoader)
# cfg = easydict.EasyDict(cfg)
# cfg.out_dir = out_dir
# cfg.model.track_num = args.vo_points
# print(f"Downloading model from HuggingFace: {cfg.ckpts}")
if args.track_mode == "offline":
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline")
else:
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Online")
# config the model; the track_num is the number of points in the grid
model.spatrack.track_num = args.vo_points
model.eval()
model.to("cuda")
viser = Visualizer(save_dir=out_dir, grayscale=True,
fps=10, pad_value=0, tracks_leave_trace=5)
grid_size = args.grid_size
# get frame H W
if video_tensor is None:
cap = cv2.VideoCapture(video_path)
frame_H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
else:
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu")
# Sample mask values at grid points and filter out points where mask=0
if os.path.exists(mask_dir):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy()
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = model.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# resize the results to avoid too large I/O Burden
# depth and image, the maximum side is 336
max_size = 336
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
conf_depth = T.Resize((new_h, new_w))(conf_depth)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
if depth_tensor is not None:
if isinstance(depth_tensor, torch.Tensor):
depth_tensor = T.Resize((new_h, new_w))(depth_tensor)
else:
depth_tensor = T.Resize((new_h, new_w))(torch.from_numpy(depth_tensor))
if viz:
viser.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# save as the tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
depth_save = point_map[:,2,...]
depth_save[conf_depth<0.5] = 0
data_npz_load["depths"] = depth_save.cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["unc_metric"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]")