import numpy as np from rdkit.Chem import AllChem as Chem from rdkit import Geometry from openbabel import openbabel as ob from openbabel import pybel from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from .protein_ligand import ATOM_FAMILIES_ID class MolReconsError(Exception): pass def reachable_r(a,b, seenbonds): '''Recursive helper.''' for nbr in ob.OBAtomAtomIter(a): bond = a.GetBond(nbr).GetIdx() if bond not in seenbonds: seenbonds.add(bond) if nbr == b: return True elif reachable_r(nbr,b,seenbonds): return True return False def reachable(a,b): '''Return true if atom b is reachable from a without using the bond between them.''' if a.GetExplicitDegree() == 1 or b.GetExplicitDegree() == 1: return False #this is the _only_ bond for one atom #otherwise do recursive traversal seenbonds = set([a.GetBond(b).GetIdx()]) return reachable_r(a,b,seenbonds) def forms_small_angle(a,b,cutoff=45): '''Return true if bond between a and b is part of a small angle with a neighbor of a only.''' for nbr in ob.OBAtomAtomIter(a): if nbr != b: degrees = b.GetAngle(a,nbr) if degrees < cutoff: return True return False def make_obmol(xyz, atomic_numbers): mol = ob.OBMol() mol.BeginModify() atoms = [] for xyz,t in zip(xyz, atomic_numbers): x,y,z = xyz # ch = struct.channels[t] atom = mol.NewAtom() atom.SetAtomicNum(t) atom.SetVector(x,y,z) atoms.append(atom) return mol, atoms def connect_the_dots(mol, atoms, indicators, maxbond=4): '''Custom implementation of ConnectTheDots. This is similar to OpenBabel's version, but is more willing to make long bonds (up to maxbond long) to keep the molecule connected. It also attempts to respect atom type information from struct. atoms and struct need to correspond in their order Assumes no hydrogens or existing bonds. ''' pt = Chem.GetPeriodicTable() if len(atoms) == 0: return mol.BeginModify() #just going to to do n^2 comparisons, can worry about efficiency later coords = np.array([(a.GetX(),a.GetY(),a.GetZ()) for a in atoms]) dists = squareform(pdist(coords)) # types = [struct.channels[t].name for t in struct.c] for (i,a) in enumerate(atoms): for (j,b) in enumerate(atoms): if a == b: break if dists[i,j] < 0.01: #reduce from 0.4 continue #don't bond too close atoms if dists[i,j] < maxbond: flag = 0 if indicators[i][ATOM_FAMILIES_ID['Aromatic']] and indicators[j][ATOM_FAMILIES_ID['Aromatic']]: # print('Aromatic', ATOM_FAMILIES_ID['Aromatic'], indicators[i]) flag = ob.OB_AROMATIC_BOND # if 'Aromatic' in types[i] and 'Aromatic' in types[j]: # flag = ob.OB_AROMATIC_BOND mol.AddBond(a.GetIdx(),b.GetIdx(),1,flag) atom_maxb = {} for (i,a) in enumerate(atoms): #set max valance to the smallest max allowed by openbabel or rdkit #since we want the molecule to be valid for both (rdkit is usually lower) maxb = ob.GetMaxBonds(a.GetAtomicNum()) maxb = min(maxb,pt.GetDefaultValence(a.GetAtomicNum())) if a.GetAtomicNum() == 16: # sulfone check if count_nbrs_of_elem(a, 8) >= 2: maxb = 6 # if indicators[i][ATOM_FAMILIES_ID['Donor']]: # maxb -= 1 #leave room for hydrogen # if 'Donor' in types[i]: # maxb -= 1 #leave room for hydrogen atom_maxb[a.GetIdx()] = maxb #remove any impossible bonds between halogens for bond in ob.OBMolBondIter(mol): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if atom_maxb[a1.GetIdx()] == 1 and atom_maxb[a2.GetIdx()] == 1: mol.DeleteBond(bond) def get_bond_info(biter): '''Return bonds sorted by their distortion''' bonds = [b for b in biter] binfo = [] for bond in bonds: bdist = bond.GetLength() #compute how far away from optimal we are a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() ideal = ob.GetCovalentRad(a1.GetAtomicNum()) + ob.GetCovalentRad(a2.GetAtomicNum()) stretch = bdist-ideal binfo.append((stretch,bdist,bond)) binfo.sort(reverse=True, key=lambda t: t[:2]) #most stretched bonds first return binfo #prioritize removing hypervalency causing bonds, do more valent #constrained atoms first since their bonds introduce the most problems #with reachability (e.g. oxygen) # hypers = sorted([(atom_maxb[a.GetIdx()],a.GetExplicitValence() - atom_maxb[a.GetIdx()], a) for a in atoms],key=lambda aa: (aa[0],-aa[1])) # for mb,diff,a in hypers: # if a.GetExplicitValence() <= atom_maxb[a.GetIdx()]: # continue # binfo = get_bond_info(ob.OBAtomBondIter(a)) # for stretch,bdist,bond in binfo: # #can we remove this bond without disconnecting the molecule? # a1 = bond.GetBeginAtom() # a2 = bond.GetEndAtom() # #get right valence # if a1.GetExplicitValence() > atom_maxb[a1.GetIdx()] or \ # a2.GetExplicitValence() > atom_maxb[a2.GetIdx()]: # #don't fragment the molecule # if not reachable(a1,a2): # continue # mol.DeleteBond(bond) # if a.GetExplicitValence() <= atom_maxb[a.GetIdx()]: # break #let nbr atoms choose what bonds to throw out binfo = get_bond_info(ob.OBMolBondIter(mol)) #now eliminate geometrically poor bonds for stretch,bdist,bond in binfo: #can we remove this bond without disconnecting the molecule? a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() #as long as we aren't disconnecting, let's remove things #that are excessively far away (0.45 from ConnectTheDots) #get bonds to be less than max allowed #also remove tight angles, because that is what ConnectTheDots does if stretch > 0.45 or forms_small_angle(a1,a2) or forms_small_angle(a2,a1): #don't fragment the molecule if not reachable(a1,a2): continue mol.DeleteBond(bond) mol.EndModify() def convert_ob_mol_to_rd_mol(ob_mol,struct=None): '''Convert OBMol to RDKit mol, fixing up issues''' ob_mol.DeleteHydrogens() n_atoms = ob_mol.NumAtoms() rd_mol = Chem.RWMol() rd_conf = Chem.Conformer(n_atoms) for ob_atom in ob.OBMolAtomIter(ob_mol): rd_atom = Chem.Atom(ob_atom.GetAtomicNum()) #TODO copy format charge if ob_atom.IsAromatic() and ob_atom.IsInRing() and ob_atom.MemberOfRingSize() <= 6: #don't commit to being aromatic unless rdkit will be okay with the ring status #(this can happen if the atoms aren't fit well enough) rd_atom.SetIsAromatic(True) i = rd_mol.AddAtom(rd_atom) ob_coords = ob_atom.GetVector() x = ob_coords.GetX() y = ob_coords.GetY() z = ob_coords.GetZ() rd_coords = Geometry.Point3D(x, y, z) rd_conf.SetAtomPosition(i, rd_coords) rd_mol.AddConformer(rd_conf) for ob_bond in ob.OBMolBondIter(ob_mol): i = ob_bond.GetBeginAtomIdx()-1 j = ob_bond.GetEndAtomIdx()-1 bond_order = ob_bond.GetBondOrder() if bond_order == 1: rd_mol.AddBond(i, j, Chem.BondType.SINGLE) elif bond_order == 2: rd_mol.AddBond(i, j, Chem.BondType.DOUBLE) elif bond_order == 3: rd_mol.AddBond(i, j, Chem.BondType.TRIPLE) else: raise Exception('unknown bond order {}'.format(bond_order)) if ob_bond.IsAromatic(): bond = rd_mol.GetBondBetweenAtoms (i,j) bond.SetIsAromatic(True) rd_mol = Chem.RemoveHs(rd_mol, sanitize=False) pt = Chem.GetPeriodicTable() #if double/triple bonds are connected to hypervalent atoms, decrement the order positions = rd_mol.GetConformer().GetPositions() nonsingles = [] for bond in rd_mol.GetBonds(): if bond.GetBondType() == Chem.BondType.DOUBLE or bond.GetBondType() == Chem.BondType.TRIPLE: i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() dist = np.linalg.norm(positions[i]-positions[j]) nonsingles.append((dist,bond)) nonsingles.sort(reverse=True, key=lambda t: t[0]) for (d,bond) in nonsingles: a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if calc_valence(a1) > pt.GetDefaultValence(a1.GetAtomicNum()) or \ calc_valence(a2) > pt.GetDefaultValence(a2.GetAtomicNum()): btype = Chem.BondType.SINGLE if bond.GetBondType() == Chem.BondType.TRIPLE: btype = Chem.BondType.DOUBLE bond.SetBondType(btype) for atom in rd_mol.GetAtoms(): #set nitrogens with 4 neighbors to have a charge if atom.GetAtomicNum() == 7 and atom.GetDegree() == 4: atom.SetFormalCharge(1) rd_mol = Chem.AddHs(rd_mol,addCoords=True) positions = rd_mol.GetConformer().GetPositions() center = np.mean(positions[np.all(np.isfinite(positions),axis=1)],axis=0) for atom in rd_mol.GetAtoms(): i = atom.GetIdx() pos = positions[i] if not np.all(np.isfinite(pos)): #hydrogens on C fragment get set to nan (shouldn't, but they do) rd_mol.GetConformer().SetAtomPosition(i,center) try: Chem.SanitizeMol(rd_mol,Chem.SANITIZE_ALL^Chem.SANITIZE_KEKULIZE) except: raise MolReconsError() # try: # Chem.SanitizeMol(rd_mol,Chem.SANITIZE_ALL^Chem.SANITIZE_KEKULIZE) # except: # mtr22 - don't assume mols will pass this # pass # # dkoes - but we want to make failures as rare as possible and should debug them # m = pybel.Molecule(ob_mol) # i = np.random.randint(1000000) # outname = 'bad%d.sdf'%i # print("WRITING",outname) # m.write('sdf',outname,overwrite=True) # pickle.dump(struct,open('bad%d.pkl'%i,'wb')) #but at some point stop trying to enforce our aromaticity - #openbabel and rdkit have different aromaticity models so they #won't always agree. Remove any aromatic bonds to non-aromatic atoms for bond in rd_mol.GetBonds(): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if bond.GetIsAromatic(): if not a1.GetIsAromatic() or not a2.GetIsAromatic(): bond.SetIsAromatic(False) elif a1.GetIsAromatic() and a2.GetIsAromatic(): bond.SetIsAromatic(True) return rd_mol def calc_valence(rdatom): '''Can call GetExplicitValence before sanitize, but need to know this to fix up the molecule to prevent sanitization failures''' cnt = 0.0 for bond in rdatom.GetBonds(): cnt += bond.GetBondTypeAsDouble() return cnt def count_nbrs_of_elem(atom, atomic_num): ''' Count the number of neighbors atoms of atom with the given atomic_num. ''' count = 0 for nbr in ob.OBAtomAtomIter(atom): if nbr.GetAtomicNum() == atomic_num: count += 1 return count def fixup(atoms, mol, indicators): '''Set atom properties to match channel. Keep doing this to beat openbabel over the head with what we want to happen.''' mol.SetAromaticPerceived(True) #avoid perception for i, atom in enumerate(atoms): # ch = struct.channels[t] ind = indicators[i] if ind[ATOM_FAMILIES_ID['Aromatic']]: atom.SetAromatic(True) atom.SetHyb(2) # if ind[ATOM_FAMILIES_ID['Donor']]: # if atom.GetExplicitDegree() == atom.GetHvyDegree(): # if atom.GetHvyDegree() == 1 and atom.GetAtomicNum() == 7: # atom.SetImplicitHCount(2) # else: # atom.SetImplicitHCount(1) # elif ind[ATOM_FAMILIES_ID['Acceptor']]: # NOT AcceptorDonor because of else # atom.SetImplicitHCount(0) if (atom.GetAtomicNum() in (7, 8)) and atom.IsInRing(): # Nitrogen, Oxygen #this is a little iffy, ommitting until there is more evidence it is a net positive #we don't have aromatic types for nitrogen, but if it #is in a ring with aromatic carbon mark it aromatic as well acnt = 0 for nbr in ob.OBAtomAtomIter(atom): if nbr.IsAromatic(): acnt += 1 if acnt > 1: atom.SetAromatic(True) def raw_obmol_from_generated(data): xyz = data.ligand_context_pos.clone().cpu().tolist() atomic_nums = data.ligand_context_element.clone().cpu().tolist() # indicators = data.ligand_context_feature_full[:, -len(ATOM_FAMILIES_ID):].clone().cpu().bool().tolist() mol, atoms = make_obmol(xyz, atomic_nums) return mol, atoms UPGRADE_BOND_ORDER = {Chem.BondType.SINGLE:Chem.BondType.DOUBLE, Chem.BondType.DOUBLE:Chem.BondType.TRIPLE} def postprocess_rd_mol_1(rdmol): rdmol = Chem.RemoveHs(rdmol) # Construct bond nbh list nbh_list = {} for bond in rdmol.GetBonds(): begin, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() if begin not in nbh_list: nbh_list[begin] = [end] else: nbh_list[begin].append(end) if end not in nbh_list: nbh_list[end] = [begin] else: nbh_list[end].append(begin) # Fix missing bond-order for atom in rdmol.GetAtoms(): idx = atom.GetIdx() num_radical = atom.GetNumRadicalElectrons() if num_radical > 0: for j in nbh_list[idx]: if j <= idx: continue nb_atom = rdmol.GetAtomWithIdx(j) nb_radical = nb_atom.GetNumRadicalElectrons() if nb_radical > 0: bond = rdmol.GetBondBetweenAtoms(idx, j) bond.SetBondType(UPGRADE_BOND_ORDER[bond.GetBondType()]) nb_atom.SetNumRadicalElectrons(nb_radical - 1) num_radical -= 1 atom.SetNumRadicalElectrons(num_radical) num_radical = atom.GetNumRadicalElectrons() if num_radical > 0: atom.SetNumRadicalElectrons(0) num_hs = atom.GetNumExplicitHs() atom.SetNumExplicitHs(num_hs + num_radical) return rdmol def postprocess_rd_mol_2(rdmol): rdmol_edit = Chem.RWMol(rdmol) ring_info = rdmol.GetRingInfo() ring_info.AtomRings() rings = [set(r) for r in ring_info.AtomRings()] for i, ring_a in enumerate(rings): if len(ring_a) == 3: non_carbon = [] atom_by_symb = {} for atom_idx in ring_a: symb = rdmol.GetAtomWithIdx(atom_idx).GetSymbol() if symb != 'C': non_carbon.append(atom_idx) if symb not in atom_by_symb: atom_by_symb[symb] = [atom_idx] else: atom_by_symb[symb].append(atom_idx) if len(non_carbon) == 2: rdmol_edit.RemoveBond(*non_carbon) if 'O' in atom_by_symb and len(atom_by_symb['O']) == 2: rdmol_edit.RemoveBond(*atom_by_symb['O']) rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][0]).SetNumExplicitHs( rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][0]).GetNumExplicitHs() + 1 ) rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][1]).SetNumExplicitHs( rdmol_edit.GetAtomWithIdx(atom_by_symb['O'][1]).GetNumExplicitHs() + 1 ) rdmol = rdmol_edit.GetMol() for atom in rdmol.GetAtoms(): if atom.GetFormalCharge() > 0: atom.SetFormalCharge(0) return rdmol def reconstruct_from_generated(data): xyz = data.ligand_context_pos.clone().cpu().tolist() atomic_nums = data.ligand_context_element.clone().cpu().tolist() indicators = data.ligand_context_feature_full[:, -len(ATOM_FAMILIES_ID):].clone().cpu().bool().tolist() mol, atoms = make_obmol(xyz, atomic_nums) fixup(atoms, mol, indicators) connect_the_dots(mol, atoms, indicators, 2) fixup(atoms, mol, indicators) mol.EndModify() fixup(atoms, mol, indicators) mol.AddPolarHydrogens() mol.PerceiveBondOrders() fixup(atoms, mol, indicators) for (i,a) in enumerate(atoms): ob.OBAtomAssignTypicalImplicitHydrogens(a) fixup(atoms, mol, indicators) mol.AddHydrogens() fixup(atoms, mol, indicators) #make rings all aromatic if majority of carbons are aromatic for ring in ob.OBMolRingIter(mol): if 5 <= ring.Size() <= 6: carbon_cnt = 0 aromatic_ccnt = 0 for ai in ring._path: a = mol.GetAtom(ai) if a.GetAtomicNum() == 6: carbon_cnt += 1 if a.IsAromatic(): aromatic_ccnt += 1 if aromatic_ccnt >= carbon_cnt/2 and aromatic_ccnt != ring.Size(): #set all ring atoms to be aromatic for ai in ring._path: a = mol.GetAtom(ai) a.SetAromatic(True) #bonds must be marked aromatic for smiles to match for bond in ob.OBMolBondIter(mol): a1 = bond.GetBeginAtom() a2 = bond.GetEndAtom() if a1.IsAromatic() and a2.IsAromatic(): bond.SetAromatic(True) mol.PerceiveBondOrders() rd_mol = convert_ob_mol_to_rd_mol(mol) # Post-processing rd_mol = postprocess_rd_mol_1(rd_mol) rd_mol = postprocess_rd_mol_2(rd_mol) return rd_mol