Zaixi commited on
Commit
6ee4b83
·
1 Parent(s): f9d6756
Files changed (1) hide show
  1. app.py +512 -7
app.py CHANGED
@@ -1,7 +1,512 @@
1
- import gradio as gr
2
-
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
-
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ from gradio_molecule3d import Molecule3D
4
+ import os
5
+ import numpy as np
6
+ import torch
7
+ from rdkit import Chem
8
+ import argparse
9
+ import random
10
+ from tqdm import tqdm
11
+ from vina import Vina
12
+ import esm
13
+ from utils.relax import openmm_relax, relax_sdf
14
+ from utils.protein_ligand import PDBProtein, parse_sdf_file
15
+ from utils.data import torchify_dict
16
+ from torch_geometric.transforms import Compose
17
+ from utils.datasets import *
18
+ from utils.transforms import *
19
+ from utils.misc import *
20
+ from utils.data import *
21
+ from torch.utils.data import DataLoader
22
+ from models.PD import Pocket_Design_new
23
+ from functools import partial
24
+ import pickle
25
+ import yaml
26
+ from easydict import EasyDict
27
+ import uuid
28
+ from datetime import datetime
29
+ import tempfile
30
+ import shutil
31
+ from Bio import PDB
32
+ from Bio.PDB import MMCIFParser, PDBIO
33
+ import logging
34
+ import zipfile
35
+
36
+ # 配置日志
37
+ logger = logging.getLogger(__name__)
38
+ LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
39
+ logging.basicConfig(
40
+ format=LOG_FORMAT,
41
+ level=logging.INFO,
42
+ datefmt="%Y-%m-%d %H:%M:%S",
43
+ filemode="w",
44
+ )
45
+
46
+ # 确保目录存在
47
+ os.makedirs("./generate/upload", exist_ok=True)
48
+ os.makedirs("./tmp", exist_ok=True)
49
+
50
+ # 自定义CSS样式
51
+ custom_css = """
52
+ .title {
53
+ font-size: 32px;
54
+ font-weight: bold;
55
+ color: #4CAF50;
56
+ display: flex;
57
+ align-items: center;
58
+ }
59
+ .subtitle {
60
+ font-size: 20px;
61
+ color: #666;
62
+ margin-bottom: 20px;
63
+ }
64
+ .footer {
65
+ margin-top: 20px;
66
+ text-align: center;
67
+ color: #666;
68
+ }
69
+ """
70
+
71
+ # 3D显示表示设置 - 默认配置
72
+ default_reps = [
73
+ {
74
+ "model": 0,
75
+ "chain": "",
76
+ "resname": "",
77
+ "style": "cartoon",
78
+ "color": "whiteCarbon",
79
+ "residue_range": "",
80
+ "around": 0,
81
+ "byres": False,
82
+ "visible": True,
83
+ "opacity": 1.0
84
+ },
85
+ {
86
+ "model": 0,
87
+ "chain": "",
88
+ "resname": "",
89
+ "style": "stick",
90
+ "color": "greenCarbon",
91
+ "around": 5, # 显示配体周围5Å的残基
92
+ "byres": True,
93
+ "visible": True,
94
+ "opacity": 0.8
95
+ }
96
+ ]
97
+
98
+ def create_zip_file(directory_path, zip_filename):
99
+ """将指定目录压缩为zip文件"""
100
+ try:
101
+ with zipfile.ZipFile(zip_filename, 'w', zipfile.ZIP_DEFLATED) as zipf:
102
+ for root, dirs, files in os.walk(directory_path):
103
+ for file in files:
104
+ file_path = os.path.join(root, file)
105
+ arcname = os.path.relpath(file_path, directory_path)
106
+ zipf.write(file_path, arcname)
107
+
108
+ logger.info(f"成功创建压缩文件: {zip_filename}")
109
+ return zip_filename
110
+ except Exception as e:
111
+ logger.error(f"创建压缩文件时出错: {str(e)}")
112
+ return None
113
+
114
+ def load_config(config_path):
115
+ """加载配置文件"""
116
+ with open(config_path, 'r') as f:
117
+ config_dict = yaml.load(f, Loader=yaml.FullLoader)
118
+ return EasyDict(config_dict)
119
+
120
+ # 删除了Vina相关的计算函数,因为只需要RMSD结果
121
+
122
+ def from_protein_ligand_dicts(protein_dict=None, ligand_dict=None, residue_dict=None, seq=None, full_seq_idx=None,
123
+ r10_idx=None):
124
+ """从蛋白质和配体字典创建数据实例"""
125
+ instance = {}
126
+
127
+ if protein_dict is not None:
128
+ for key, item in protein_dict.items():
129
+ instance['protein_' + key] = item
130
+
131
+ if ligand_dict is not None:
132
+ for key, item in ligand_dict.items():
133
+ instance['ligand_' + key] = item
134
+
135
+ if residue_dict is not None:
136
+ for key, item in residue_dict.items():
137
+ instance[key] = item
138
+
139
+ if seq is not None:
140
+ instance['seq'] = seq
141
+
142
+ if full_seq_idx is not None:
143
+ instance['full_seq_idx'] = full_seq_idx
144
+
145
+ if r10_idx is not None:
146
+ instance['r10_idx'] = r10_idx
147
+
148
+ return instance
149
+
150
+ def ith_true_index(tensor, i):
151
+ """找到张量中第i个为真的元素的索引"""
152
+ true_indices = torch.nonzero(tensor).squeeze()
153
+ return true_indices[i].item()
154
+
155
+ def name2data(pdb_path, lig_path):
156
+ """从PDB和SDF文件生成数据"""
157
+ name = os.path.basename(pdb_path).split('.')[0]
158
+ dir_name = os.path.dirname(pdb_path)
159
+ pocket_path = os.path.join(dir_name, f"{name}_pocket.pdb")
160
+
161
+ try:
162
+ with open(pdb_path, 'r') as f:
163
+ pdb_block = f.read()
164
+ protein = PDBProtein(pdb_block)
165
+ seq = ''.join(protein.to_dict_residue()['seq'])
166
+
167
+ ligand = parse_sdf_file(lig_path, feat=False)
168
+ if ligand is None:
169
+ raise ValueError(f"无法从{lig_path}解析配体")
170
+
171
+ r10_idx, r10_residues = protein.query_residues_ligand(ligand, radius=10, selected_residue=None, return_mask=False)
172
+ full_seq_idx, _ = protein.query_residues_ligand(ligand, radius=3.5, selected_residue=r10_residues, return_mask=False)
173
+
174
+ if not r10_residues:
175
+ raise ValueError("在配体10Å范围内未找到任何残基")
176
+
177
+ assert len(r10_idx) == len(r10_residues)
178
+
179
+ pdb_block_pocket = protein.residues_to_pdb_block(r10_residues)
180
+ with open(pocket_path, 'w') as f:
181
+ f.write(pdb_block_pocket)
182
+
183
+ with open(pocket_path, 'r') as f:
184
+ pdb_block = f.read()
185
+ pocket = PDBProtein(pdb_block)
186
+
187
+ pocket_dict = pocket.to_dict_atom()
188
+ residue_dict = pocket.to_dict_residue()
189
+
190
+ _, residue_dict['protein_edit_residue'] = pocket.query_residues_ligand(ligand)
191
+ if residue_dict['protein_edit_residue'].sum() == 0:
192
+ raise ValueError("在口袋内未找到可编辑残基")
193
+
194
+ assert residue_dict['protein_edit_residue'].sum() > 0 and residue_dict['protein_edit_residue'].sum() == len(full_seq_idx)
195
+ assert len(residue_dict['protein_edit_residue']) == len(r10_idx)
196
+ full_seq_idx.sort()
197
+ r10_idx.sort()
198
+
199
+ data = from_protein_ligand_dicts(
200
+ protein_dict=torchify_dict(pocket_dict),
201
+ ligand_dict=torchify_dict(ligand),
202
+ residue_dict=torchify_dict(residue_dict),
203
+ seq=seq,
204
+ full_seq_idx=torch.tensor(full_seq_idx),
205
+ r10_idx=torch.tensor(r10_idx)
206
+ )
207
+ data['protein_filename'] = pocket_path
208
+ data['ligand_filename'] = lig_path
209
+ data['whole_protein_name'] = pdb_path
210
+
211
+ return transform(data)
212
+
213
+ except Exception as e:
214
+ logger.error(f"name2data中出错: {str(e)}")
215
+ raise
216
+
217
+ def convert_cif_to_pdb(cif_path):
218
+ """将CIF文件转换为PDB文件并保存为临时文件"""
219
+ try:
220
+ parser = MMCIFParser()
221
+ structure = parser.get_structure("protein", cif_path)
222
+
223
+ with tempfile.NamedTemporaryFile(suffix=".pdb", delete=False) as temp_file:
224
+ temp_pdb_path = temp_file.name
225
+
226
+ io = PDBIO()
227
+ io.set_structure(structure)
228
+ io.save(temp_pdb_path)
229
+
230
+ return temp_pdb_path
231
+
232
+ except Exception as e:
233
+ logger.error(f"将CIF转换为PDB时出错: {str(e)}")
234
+ raise
235
+
236
+ def align_pdb_files(pdb_file_1, pdb_file_2):
237
+ """将两个PDB文件对齐,将第二个结构对齐到第一个结构上"""
238
+ try:
239
+ parser = PDB.PPBuilder()
240
+ io = PDB.PDBIO()
241
+ structure_1 = PDB.PDBParser(QUIET=True).get_structure('Structure_1', pdb_file_1)
242
+ structure_2 = PDB.PDBParser(QUIET=True).get_structure('Structure_2', pdb_file_2)
243
+
244
+ super_imposer = PDB.Superimposer()
245
+ model_1 = structure_1[0]
246
+ model_2 = structure_2[0]
247
+
248
+ atoms_1 = [atom for atom in model_1.get_atoms() if atom.get_name() == "CA"]
249
+ atoms_2 = [atom for atom in model_2.get_atoms() if atom.get_name() == "CA"]
250
+
251
+ if not atoms_1 or not atoms_2:
252
+ logger.warning("未找到用于对齐的CA原子")
253
+ return
254
+
255
+ min_length = min(len(atoms_1), len(atoms_2))
256
+ if min_length == 0:
257
+ logger.warning("没有可用于对齐的原子")
258
+ return
259
+
260
+ super_imposer.set_atoms(atoms_1[:min_length], atoms_2[:min_length])
261
+ super_imposer.apply(model_2)
262
+
263
+ io.set_structure(structure_2)
264
+ io.save(pdb_file_2)
265
+
266
+ except Exception as e:
267
+ logger.error(f"对齐PDB文件时出错: {str(e)}")
268
+ raise
269
+
270
+ def create_combined_structure(protein_path, ligand_path, output_path):
271
+ """将蛋白质和配体合并为一个PDB文件以便可视化"""
272
+ try:
273
+ # 读取蛋白质PDB文件
274
+ with open(protein_path, 'r') as f:
275
+ protein_content = f.read()
276
+
277
+ # 读取配体SDF文件并转换为PDB格式的字符串
278
+ mol = Chem.MolFromMolFile(ligand_path)
279
+ if mol is None:
280
+ logger.error(f"无法读取配体文件: {ligand_path}")
281
+ return protein_path
282
+
283
+ # 将配体转换为PDB格式
284
+ ligand_pdb_block = Chem.MolToPDBBlock(mol)
285
+
286
+ # 合并蛋白质和配体
287
+ combined_content = protein_content.rstrip() + "\n" + ligand_pdb_block
288
+
289
+ # 保存合并后的文件
290
+ with open(output_path, 'w') as f:
291
+ f.write(combined_content)
292
+
293
+ return output_path
294
+
295
+ except Exception as e:
296
+ logger.error(f"创建合并结构时出错: {str(e)}")
297
+ return protein_path # 如果失败,返回原始蛋白质文件
298
+
299
+ @spaces.GPU(duration=500)
300
+ def process_files(pdb_file, sdf_file, config_path):
301
+ """处理上传的PDB和SDF文件"""
302
+
303
+ try:
304
+ unique_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
305
+ upload_dir = os.path.join("./generate/upload", unique_id)
306
+ os.makedirs(upload_dir, exist_ok=True)
307
+
308
+ logger.info(f"使用ID处理文件: {unique_id}")
309
+
310
+ config = load_config(config_path)
311
+
312
+ pdb_save_path = os.path.join(upload_dir, "protein.pdb")
313
+ sdf_save_path = os.path.join(upload_dir, "ligand.sdf")
314
+
315
+ shutil.copy(pdb_file, pdb_save_path)
316
+ shutil.copy(sdf_file, sdf_save_path)
317
+
318
+ logger.info(f"文件已保存到 {upload_dir}")
319
+
320
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
321
+ logger.info(f"使用设备: {device}")
322
+
323
+ protein_featurizer = FeaturizeProteinAtom()
324
+ ligand_featurizer = FeaturizeLigandAtom()
325
+ global transform
326
+ transform = Compose([
327
+ protein_featurizer,
328
+ ligand_featurizer,
329
+ ])
330
+
331
+ logger.info("加载ESM模型...")
332
+ name = 'esm2_t33_650M_UR50D'
333
+ pretrained_model, alphabet = esm.pretrained.load_model_and_alphabet_hub(name)
334
+ batch_converter = alphabet.get_batch_converter()
335
+
336
+ checkpoint_path = config.model.checkpoint
337
+ logger.info(f"从{checkpoint_path}加载检查点")
338
+ ckpt = torch.load(checkpoint_path, map_location=device, weights_only=False)
339
+ del pretrained_model
340
+
341
+ logger.info("初始化模型...")
342
+ model = Pocket_Design_new(
343
+ config.model,
344
+ protein_atom_feature_dim=protein_featurizer.feature_dim,
345
+ ligand_atom_feature_dim=ligand_featurizer.feature_dim,
346
+ device=device
347
+ ).to(device)
348
+ model.load_state_dict(ckpt['model'])
349
+
350
+ logger.info("处理输入数据...")
351
+ data = name2data(pdb_save_path, sdf_save_path)
352
+
353
+ batch_size = 2
354
+ datalist = [data for _ in range(batch_size)]
355
+ protein_filename = data['protein_filename']
356
+ ligand_filename = data['ligand_filename']
357
+ whole_protein_name = data['whole_protein_name']
358
+
359
+ dir_name = os.path.dirname(protein_filename)
360
+
361
+ model.generate_id = 0
362
+ model.generate_id1 = 0
363
+
364
+ test_loader = DataLoader(
365
+ datalist,
366
+ batch_size=batch_size,
367
+ shuffle=False,
368
+ num_workers=0,
369
+ collate_fn=partial(collate_mols_block, batch_converter=batch_converter)
370
+ )
371
+
372
+ logger.info("生成结构...")
373
+ with torch.no_grad():
374
+ model.eval()
375
+ for batch in tqdm(test_loader, desc='Test'):
376
+ for key in batch:
377
+ if torch.is_tensor(batch[key]):
378
+ batch[key] = batch[key].to(device)
379
+
380
+ aar, rmsd, attend_logits = model.generate(batch, dir_name)
381
+ logger.info(f'RMSD: {rmsd}')
382
+
383
+ # 创建结果文件
384
+ result_path = os.path.join(dir_name, "0_whole.pdb")
385
+ relaxed_path = os.path.join(dir_name, "0_relaxed.pdb")
386
+ if os.path.exists(relaxed_path):
387
+ shutil.copy(relaxed_path, result_path)
388
+ else:
389
+ shutil.copy(pdb_save_path, result_path)
390
+
391
+ # 创建包含蛋白质和配体的合并文件用于可视化
392
+ combined_path = os.path.join(dir_name, "combined_structure.pdb")
393
+ visualization_path = create_combined_structure(result_path, sdf_save_path, combined_path)
394
+
395
+ # 创建压缩文件
396
+ zip_filename = os.path.join("./generate/upload", f"{unique_id}_results.zip")
397
+ zip_path = create_zip_file(upload_dir, zip_filename)
398
+
399
+ logger.info(f"结果已保存到 {result_path}")
400
+ logger.info(f"压缩文件已创建: {zip_path}")
401
+
402
+ summary = f"""
403
+ 处理完成!
404
+
405
+ 结果摘要:
406
+ - 均方根偏差 (RMSD): {rmsd}
407
+
408
+ 文件说明:
409
+ - 所有结果文件已打包为ZIP文件供下载
410
+ - 包含原始输入、处理结果等
411
+ - 任务ID: {unique_id}
412
+ """
413
+
414
+ return visualization_path, zip_path, summary
415
+
416
+ except Exception as e:
417
+ import traceback
418
+ error_trace = traceback.format_exc()
419
+ logger.error(f"处理过程中出错: {error_trace}")
420
+ return None, None, f"处理过程中出错: {str(e)}"
421
+
422
+ def gradio_interface(pdb_file, sdf_file, config_path):
423
+ """Gradio接口函数"""
424
+
425
+ if pdb_file is None or sdf_file is None:
426
+ return None, None, "请上传PDB和SDF文件。"
427
+
428
+ logger.info(f"开始处理{pdb_file}和{sdf_file}")
429
+ pdb_viewer, zip_path, message = process_files(pdb_file, sdf_file, config_path)
430
+
431
+ if pdb_viewer and os.path.exists(pdb_viewer):
432
+ return pdb_viewer, zip_path, message
433
+ else:
434
+ return None, None, message if message else "处理失败,未知错误。"
435
+
436
+ # 创建Gradio接口
437
+ with gr.Blocks(title="蛋白质-配体处理", css=custom_css) as demo:
438
+ gr.Markdown("# 蛋白质-配体结构处理", elem_classes=["title"])
439
+ gr.Markdown("上传PDB和SDF文件进行蛋白质口袋设计和配体对接分析", elem_classes=["subtitle"])
440
+
441
+ with gr.Row():
442
+ with gr.Column(scale=1):
443
+ pdb_input = gr.File(label="上传PDB文件", file_types=[".pdb"])
444
+ sdf_input = gr.File(label="上传SDF文件", file_types=[".sdf"])
445
+ config_input = gr.Textbox(label="配置文件路径", value="./configs/train_model_moad.yml")
446
+ submit_btn = gr.Button("处理文件", variant="primary")
447
+
448
+ with gr.Column(scale=2):
449
+ # 使用Molecule3D组件,固定为默认样式
450
+ view3d = Molecule3D(
451
+ label="3D结构可视化 (蛋白质卡通 + 配体周围残基棒状)",
452
+ reps=default_reps
453
+ )
454
+ output_message = gr.Textbox(label="处理状态和结果摘要", lines=8)
455
+ output_file = gr.File(label="下载完整结果包 (ZIP)")
456
+
457
+ # 处理文件的点击事件
458
+ submit_btn.click(
459
+ fn=gradio_interface,
460
+ inputs=[pdb_input, sdf_input, config_input],
461
+ outputs=[view3d, output_file, output_message]
462
+ )
463
+
464
+ gr.Markdown("""
465
+ ## 使用说明
466
+
467
+ 1. **上传文件**: 上传蛋白质PDB文件和配体SDF文件
468
+ 2. **配置设置**: 保持默认配置路径或调整为您的配置文件位置
469
+ 3. **处理文件**: 点击"处理文件"按钮开始处理
470
+ 4. **结果查看**:
471
+ - 在3D查看器中交互式查看优化后的蛋白质-配体复合物结构
472
+ - 查看详细的处理结果摘要
473
+ - 下载包含所有结果文件的ZIP压缩包
474
+
475
+ ## 3D可视化功能
476
+
477
+ - **旋转**: 鼠标左键拖拽
478
+ - **缩放**: 鼠标滚轮或双指缩放
479
+ - **平移**: 鼠标右键拖拽
480
+ - **重置视图**: 双击重置到初始视角
481
+
482
+ 可视化样式说明:
483
+ - 蛋白质以卡通形式显示(白色碳骨架)
484
+ - 配体周围5Å内的残基以棒状形式显示(绿色碳骨架)
485
+
486
+ ## 下载文件说明
487
+
488
+ ZIP压缩包包含以下文件:
489
+ - **protein.pdb**: 原始输入蛋白质文件
490
+ - **ligand.sdf**: 原始输入配体文件
491
+ - **protein_pocket.pdb**: 提取的蛋白质口袋文件
492
+ - **0_whole.pdb**: 优化后的完整蛋白质结构
493
+ - **0_relaxed.pdb**: 松弛优化后的蛋白质结构
494
+ - **combined_structure.pdb**: 用于可视化的蛋白质-配体复合物
495
+
496
+ ## 技术说明
497
+
498
+ 该应用程序使用深度学习方法优化蛋白质口袋结构,提高与特定配体的结合能力。主要功能包括:
499
+
500
+ - **蛋白质口袋识别**: 自动识别并提取配体结合口袋
501
+ - **结构优化设计**: 使用AI模型优化口袋残基构象
502
+ - **分子对接评分**: 使用Vina进行结合能评估
503
+ - **交互式3D可视化**: 清晰展示蛋白质-配体相互作用
504
+ - **完整结果打包**: 所有中间和最终结果文件统一打包下载
505
+
506
+ 处理可能需要几分钟时间,请耐心等待。
507
+ """)
508
+
509
+ gr.Markdown("© 2025 zaixi", elem_classes=["footer"])
510
+
511
+ if __name__ == "__main__":
512
+ demo.launch(share=True)