Spaces:
Running
Running
Upload 3 files
Browse files- app.py +33 -0
- best.pt +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
st.title("Object Detection with YOLO")
|
6 |
+
|
7 |
+
model = YOLO('best.pt')
|
8 |
+
|
9 |
+
def detect_objects(image):
|
10 |
+
result = model(image)
|
11 |
+
return result
|
12 |
+
|
13 |
+
|
14 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
image = Image.open(uploaded_file)
|
18 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
19 |
+
|
20 |
+
if st.button('Detect Objects'):
|
21 |
+
image.save('uploaded_image.jpg')
|
22 |
+
|
23 |
+
result = detect_objects('uploaded_image.jpg')
|
24 |
+
|
25 |
+
boxes = result[0].boxes
|
26 |
+
masks = result[0].masks
|
27 |
+
keypoints = result[0].keypoints
|
28 |
+
probs = result[0].probs
|
29 |
+
|
30 |
+
st.write("Number of objects detected:", len(boxes))
|
31 |
+
result[0].save(filename='result.jpg')
|
32 |
+
|
33 |
+
st.image('result.jpg', use_column_width=True)
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2631a282bc9fe4bf10af87f1ea6a89b2c15f756e22a8c35f24a3e2303243caa6
|
3 |
+
size 6223705
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
ultralytics
|
3 |
+
streamlit
|