Spaces:
Runtime error
Runtime error
Commit
·
691ef95
1
Parent(s):
e266a77
runners
Browse files- minigpt4/__init__.py +31 -0
- minigpt4/runners/__init__.py +10 -0
- minigpt4/runners/__pycache__/__init__.cpython-39.pyc +0 -0
- minigpt4/runners/__pycache__/runner_base.cpython-39.pyc +0 -0
- minigpt4/runners/runner_base.py +665 -0
- minigpt4/tasks/__init__.py +26 -0
- minigpt4/tasks/__pycache__/__init__.cpython-39.pyc +0 -0
- minigpt4/tasks/__pycache__/base_task.cpython-39.pyc +0 -0
- minigpt4/tasks/__pycache__/image_text_pretrain.cpython-39.pyc +0 -0
- minigpt4/tasks/base_task.py +315 -0
- minigpt4/tasks/image_text_pretrain.py +19 -0
minigpt4/__init__.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
from omegaconf import OmegaConf
|
| 12 |
+
|
| 13 |
+
from minigpt4.common.registry import registry
|
| 14 |
+
|
| 15 |
+
from minigpt4.datasets.builders import *
|
| 16 |
+
from minigpt4.models import *
|
| 17 |
+
from minigpt4.processors import *
|
| 18 |
+
from minigpt4.tasks import *
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
root_dir = os.path.dirname(os.path.abspath(__file__))
|
| 22 |
+
default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml"))
|
| 23 |
+
|
| 24 |
+
registry.register_path("library_root", root_dir)
|
| 25 |
+
repo_root = os.path.join(root_dir, "..")
|
| 26 |
+
registry.register_path("repo_root", repo_root)
|
| 27 |
+
cache_root = os.path.join(repo_root, default_cfg.env.cache_root)
|
| 28 |
+
registry.register_path("cache_root", cache_root)
|
| 29 |
+
|
| 30 |
+
registry.register("MAX_INT", sys.maxsize)
|
| 31 |
+
registry.register("SPLIT_NAMES", ["train", "val", "test"])
|
minigpt4/runners/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from minigpt4.runners.runner_base import RunnerBase
|
| 9 |
+
|
| 10 |
+
__all__ = ["RunnerBase"]
|
minigpt4/runners/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (473 Bytes). View file
|
|
|
minigpt4/runners/__pycache__/runner_base.cpython-39.pyc
ADDED
|
Binary file (17.6 kB). View file
|
|
|
minigpt4/runners/runner_base.py
ADDED
|
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datetime
|
| 9 |
+
import json
|
| 10 |
+
import logging
|
| 11 |
+
import os
|
| 12 |
+
import time
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.distributed as dist
|
| 17 |
+
import webdataset as wds
|
| 18 |
+
from minigpt4.common.dist_utils import (
|
| 19 |
+
download_cached_file,
|
| 20 |
+
get_rank,
|
| 21 |
+
get_world_size,
|
| 22 |
+
is_main_process,
|
| 23 |
+
main_process,
|
| 24 |
+
)
|
| 25 |
+
from minigpt4.common.registry import registry
|
| 26 |
+
from minigpt4.common.utils import is_url
|
| 27 |
+
from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset
|
| 28 |
+
from minigpt4.datasets.datasets.dataloader_utils import (
|
| 29 |
+
IterLoader,
|
| 30 |
+
MultiIterLoader,
|
| 31 |
+
PrefetchLoader,
|
| 32 |
+
)
|
| 33 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 34 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@registry.register_runner("runner_base")
|
| 38 |
+
class RunnerBase:
|
| 39 |
+
"""
|
| 40 |
+
A runner class to train and evaluate a model given a task and datasets.
|
| 41 |
+
|
| 42 |
+
The runner uses pytorch distributed data parallel by default. Future release
|
| 43 |
+
will support other distributed frameworks.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, cfg, task, model, datasets, job_id):
|
| 47 |
+
self.config = cfg
|
| 48 |
+
self.job_id = job_id
|
| 49 |
+
|
| 50 |
+
self.task = task
|
| 51 |
+
self.datasets = datasets
|
| 52 |
+
|
| 53 |
+
self._model = model
|
| 54 |
+
|
| 55 |
+
self._wrapped_model = None
|
| 56 |
+
self._device = None
|
| 57 |
+
self._optimizer = None
|
| 58 |
+
self._scaler = None
|
| 59 |
+
self._dataloaders = None
|
| 60 |
+
self._lr_sched = None
|
| 61 |
+
|
| 62 |
+
self.start_epoch = 0
|
| 63 |
+
|
| 64 |
+
# self.setup_seeds()
|
| 65 |
+
self.setup_output_dir()
|
| 66 |
+
|
| 67 |
+
@property
|
| 68 |
+
def device(self):
|
| 69 |
+
if self._device is None:
|
| 70 |
+
self._device = torch.device(self.config.run_cfg.device)
|
| 71 |
+
|
| 72 |
+
return self._device
|
| 73 |
+
|
| 74 |
+
@property
|
| 75 |
+
def use_distributed(self):
|
| 76 |
+
return self.config.run_cfg.distributed
|
| 77 |
+
|
| 78 |
+
@property
|
| 79 |
+
def model(self):
|
| 80 |
+
"""
|
| 81 |
+
A property to get the DDP-wrapped model on the device.
|
| 82 |
+
"""
|
| 83 |
+
# move model to device
|
| 84 |
+
if self._model.device != self.device:
|
| 85 |
+
self._model = self._model.to(self.device)
|
| 86 |
+
|
| 87 |
+
# distributed training wrapper
|
| 88 |
+
if self.use_distributed:
|
| 89 |
+
if self._wrapped_model is None:
|
| 90 |
+
self._wrapped_model = DDP(
|
| 91 |
+
self._model, device_ids=[self.config.run_cfg.gpu], find_unused_parameters=True
|
| 92 |
+
)
|
| 93 |
+
else:
|
| 94 |
+
self._wrapped_model = self._model
|
| 95 |
+
|
| 96 |
+
return self._wrapped_model
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def optimizer(self):
|
| 100 |
+
# TODO make optimizer class and configurations
|
| 101 |
+
if self._optimizer is None:
|
| 102 |
+
num_parameters = 0
|
| 103 |
+
p_wd, p_non_wd = [], []
|
| 104 |
+
attention = []
|
| 105 |
+
for n, p in self.model.named_parameters():
|
| 106 |
+
if not p.requires_grad:
|
| 107 |
+
continue # frozen weights
|
| 108 |
+
print(n)
|
| 109 |
+
if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n:
|
| 110 |
+
p_non_wd.append(p)
|
| 111 |
+
else:
|
| 112 |
+
p_wd.append(p)
|
| 113 |
+
num_parameters += p.data.nelement()
|
| 114 |
+
|
| 115 |
+
logging.info("number of trainable parameters: %d" % num_parameters)
|
| 116 |
+
optim_params = [
|
| 117 |
+
{
|
| 118 |
+
"params": p_wd,
|
| 119 |
+
"weight_decay": float(self.config.run_cfg.weight_decay),
|
| 120 |
+
"lr": float(self.config.run_cfg.init_lr)
|
| 121 |
+
},
|
| 122 |
+
{"params": p_non_wd, "weight_decay": 0, "lr": float(self.config.run_cfg.init_lr)},
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
+
beta2 = self.config.run_cfg.get("beta2", 0.999)
|
| 126 |
+
self._optimizer = torch.optim.AdamW(
|
| 127 |
+
optim_params,
|
| 128 |
+
lr=float(self.config.run_cfg.init_lr),
|
| 129 |
+
weight_decay=float(self.config.run_cfg.weight_decay),
|
| 130 |
+
betas=(0.9, beta2),
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
return self._optimizer
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def scaler(self):
|
| 137 |
+
amp = self.config.run_cfg.get("amp", False)
|
| 138 |
+
|
| 139 |
+
if amp:
|
| 140 |
+
if self._scaler is None:
|
| 141 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
| 142 |
+
|
| 143 |
+
return self._scaler
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def lr_scheduler(self):
|
| 147 |
+
"""
|
| 148 |
+
A property to get and create learning rate scheduler by split just in need.
|
| 149 |
+
"""
|
| 150 |
+
if self._lr_sched is None:
|
| 151 |
+
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched)
|
| 152 |
+
|
| 153 |
+
# max_epoch = self.config.run_cfg.max_epoch
|
| 154 |
+
max_epoch = self.max_epoch
|
| 155 |
+
# min_lr = self.config.run_cfg.min_lr
|
| 156 |
+
min_lr = self.min_lr
|
| 157 |
+
# init_lr = self.config.run_cfg.init_lr
|
| 158 |
+
init_lr = self.init_lr
|
| 159 |
+
|
| 160 |
+
# optional parameters
|
| 161 |
+
decay_rate = self.config.run_cfg.get("lr_decay_rate", None)
|
| 162 |
+
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1)
|
| 163 |
+
warmup_steps = self.config.run_cfg.get("warmup_steps", 0)
|
| 164 |
+
iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None)
|
| 165 |
+
|
| 166 |
+
if iters_per_epoch is None:
|
| 167 |
+
try:
|
| 168 |
+
iters_per_epoch = len(self.dataloaders['train'])
|
| 169 |
+
except (AttributeError, TypeError):
|
| 170 |
+
iters_per_epoch = 10000
|
| 171 |
+
|
| 172 |
+
self._lr_sched = lr_sched_cls(
|
| 173 |
+
optimizer=self.optimizer,
|
| 174 |
+
max_epoch=max_epoch,
|
| 175 |
+
iters_per_epoch=iters_per_epoch,
|
| 176 |
+
min_lr=min_lr,
|
| 177 |
+
init_lr=init_lr,
|
| 178 |
+
decay_rate=decay_rate,
|
| 179 |
+
warmup_start_lr=warmup_start_lr,
|
| 180 |
+
warmup_steps=warmup_steps,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
return self._lr_sched
|
| 184 |
+
|
| 185 |
+
@property
|
| 186 |
+
def dataloaders(self) -> dict:
|
| 187 |
+
"""
|
| 188 |
+
A property to get and create dataloaders by split just in need.
|
| 189 |
+
|
| 190 |
+
If no train_dataset_ratio is provided, concatenate map-style datasets and
|
| 191 |
+
chain wds.DataPipe datasets separately. Training set becomes a tuple
|
| 192 |
+
(ConcatDataset, ChainDataset), both are optional but at least one of them is
|
| 193 |
+
required. The resultant ConcatDataset and ChainDataset will be sampled evenly.
|
| 194 |
+
|
| 195 |
+
If train_dataset_ratio is provided, create a MultiIterLoader to sample
|
| 196 |
+
each dataset by ratios during training.
|
| 197 |
+
|
| 198 |
+
Currently do not support multiple datasets for validation and test.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
dict: {split_name: (tuples of) dataloader}
|
| 202 |
+
"""
|
| 203 |
+
if self._dataloaders is None:
|
| 204 |
+
|
| 205 |
+
# concatenate map-style datasets and chain wds.DataPipe datasets separately
|
| 206 |
+
# training set becomes a tuple (ConcatDataset, ChainDataset), both are
|
| 207 |
+
# optional but at least one of them is required. The resultant ConcatDataset
|
| 208 |
+
# and ChainDataset will be sampled evenly.
|
| 209 |
+
logging.info(
|
| 210 |
+
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
batch_sizes = {dataset_name: getattr(self.config.datasets_cfg, dataset_name).batch_size
|
| 214 |
+
for dataset_name in self.datasets.keys()}
|
| 215 |
+
datasets, batch_sizes = reorg_datasets_by_split(self.datasets, batch_sizes)
|
| 216 |
+
self.datasets = datasets
|
| 217 |
+
# self.datasets = concat_datasets(datasets)
|
| 218 |
+
|
| 219 |
+
# print dataset statistics after concatenation/chaining
|
| 220 |
+
for split_name in self.datasets:
|
| 221 |
+
if isinstance(self.datasets[split_name], tuple) or isinstance(
|
| 222 |
+
self.datasets[split_name], list
|
| 223 |
+
):
|
| 224 |
+
# mixed wds.DataPipeline and torch.utils.data.Dataset
|
| 225 |
+
num_records = sum(
|
| 226 |
+
[
|
| 227 |
+
len(d)
|
| 228 |
+
if not type(d) in [wds.DataPipeline, ChainDataset]
|
| 229 |
+
else 0
|
| 230 |
+
for d in self.datasets[split_name]
|
| 231 |
+
]
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
else:
|
| 235 |
+
if hasattr(self.datasets[split_name], "__len__"):
|
| 236 |
+
# a single map-style dataset
|
| 237 |
+
num_records = len(self.datasets[split_name])
|
| 238 |
+
else:
|
| 239 |
+
# a single wds.DataPipeline
|
| 240 |
+
num_records = -1
|
| 241 |
+
logging.info(
|
| 242 |
+
"Only a single wds.DataPipeline dataset, no __len__ attribute."
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
if num_records >= 0:
|
| 246 |
+
logging.info(
|
| 247 |
+
"Loaded {} records for {} split from the dataset.".format(
|
| 248 |
+
num_records, split_name
|
| 249 |
+
)
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# create dataloaders
|
| 253 |
+
split_names = sorted(self.datasets.keys())
|
| 254 |
+
|
| 255 |
+
datasets = [self.datasets[split] for split in split_names]
|
| 256 |
+
batch_sizes = [batch_sizes[split] for split in split_names]
|
| 257 |
+
is_trains = [split in self.train_splits for split in split_names]
|
| 258 |
+
|
| 259 |
+
print("batch sizes", batch_sizes)
|
| 260 |
+
|
| 261 |
+
collate_fns = []
|
| 262 |
+
for dataset in datasets:
|
| 263 |
+
if isinstance(dataset, tuple) or isinstance(dataset, list):
|
| 264 |
+
collate_fns.append([getattr(d, "collater", None) for d in dataset])
|
| 265 |
+
else:
|
| 266 |
+
collate_fns.append(getattr(dataset, "collater", None))
|
| 267 |
+
|
| 268 |
+
dataloaders = self.create_loaders(
|
| 269 |
+
datasets=datasets,
|
| 270 |
+
num_workers=self.config.run_cfg.num_workers,
|
| 271 |
+
batch_sizes=batch_sizes,
|
| 272 |
+
is_trains=is_trains,
|
| 273 |
+
collate_fns=collate_fns,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}
|
| 277 |
+
|
| 278 |
+
return self._dataloaders
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
def cuda_enabled(self):
|
| 282 |
+
return self.device.type == "cuda"
|
| 283 |
+
|
| 284 |
+
@property
|
| 285 |
+
def max_epoch(self):
|
| 286 |
+
return int(self.config.run_cfg.max_epoch)
|
| 287 |
+
|
| 288 |
+
@property
|
| 289 |
+
def log_freq(self):
|
| 290 |
+
log_freq = self.config.run_cfg.get("log_freq", 50)
|
| 291 |
+
return int(log_freq)
|
| 292 |
+
|
| 293 |
+
@property
|
| 294 |
+
def init_lr(self):
|
| 295 |
+
return float(self.config.run_cfg.init_lr)
|
| 296 |
+
|
| 297 |
+
@property
|
| 298 |
+
def min_lr(self):
|
| 299 |
+
return float(self.config.run_cfg.min_lr)
|
| 300 |
+
|
| 301 |
+
@property
|
| 302 |
+
def accum_grad_iters(self):
|
| 303 |
+
return int(self.config.run_cfg.get("accum_grad_iters", 1))
|
| 304 |
+
|
| 305 |
+
@property
|
| 306 |
+
def valid_splits(self):
|
| 307 |
+
valid_splits = self.config.run_cfg.get("valid_splits", [])
|
| 308 |
+
|
| 309 |
+
if len(valid_splits) == 0:
|
| 310 |
+
logging.info("No validation splits found.")
|
| 311 |
+
|
| 312 |
+
return valid_splits
|
| 313 |
+
|
| 314 |
+
@property
|
| 315 |
+
def test_splits(self):
|
| 316 |
+
test_splits = self.config.run_cfg.get("test_splits", [])
|
| 317 |
+
|
| 318 |
+
return test_splits
|
| 319 |
+
|
| 320 |
+
@property
|
| 321 |
+
def train_splits(self):
|
| 322 |
+
train_splits = self.config.run_cfg.get("train_splits", [])
|
| 323 |
+
|
| 324 |
+
if len(train_splits) == 0:
|
| 325 |
+
logging.info("Empty train splits.")
|
| 326 |
+
|
| 327 |
+
return train_splits
|
| 328 |
+
|
| 329 |
+
@property
|
| 330 |
+
def evaluate_only(self):
|
| 331 |
+
"""
|
| 332 |
+
Set to True to skip training.
|
| 333 |
+
"""
|
| 334 |
+
return self.config.run_cfg.evaluate
|
| 335 |
+
|
| 336 |
+
@property
|
| 337 |
+
def use_dist_eval_sampler(self):
|
| 338 |
+
return self.config.run_cfg.get("use_dist_eval_sampler", True)
|
| 339 |
+
|
| 340 |
+
@property
|
| 341 |
+
def resume_ckpt_path(self):
|
| 342 |
+
return self.config.run_cfg.get("resume_ckpt_path", None)
|
| 343 |
+
|
| 344 |
+
@property
|
| 345 |
+
def train_loader(self):
|
| 346 |
+
train_dataloader = self.dataloaders["train"]
|
| 347 |
+
|
| 348 |
+
return train_dataloader
|
| 349 |
+
|
| 350 |
+
def setup_output_dir(self):
|
| 351 |
+
lib_root = Path(registry.get_path("library_root"))
|
| 352 |
+
|
| 353 |
+
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id
|
| 354 |
+
# output_dir = lib_root / self.config.run_cfg.output_dir
|
| 355 |
+
result_dir = output_dir / "result"
|
| 356 |
+
|
| 357 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 358 |
+
result_dir.mkdir(parents=True, exist_ok=True)
|
| 359 |
+
|
| 360 |
+
registry.register_path("result_dir", str(result_dir))
|
| 361 |
+
registry.register_path("output_dir", str(output_dir))
|
| 362 |
+
|
| 363 |
+
self.result_dir = result_dir
|
| 364 |
+
self.output_dir = output_dir
|
| 365 |
+
|
| 366 |
+
def train(self):
|
| 367 |
+
start_time = time.time()
|
| 368 |
+
best_agg_metric = 0
|
| 369 |
+
best_epoch = 0
|
| 370 |
+
|
| 371 |
+
self.log_config()
|
| 372 |
+
|
| 373 |
+
# resume from checkpoint if specified
|
| 374 |
+
if not self.evaluate_only and self.resume_ckpt_path is not None:
|
| 375 |
+
self._load_checkpoint(self.resume_ckpt_path)
|
| 376 |
+
|
| 377 |
+
for cur_epoch in range(self.start_epoch, self.max_epoch):
|
| 378 |
+
# training phase
|
| 379 |
+
if not self.evaluate_only:
|
| 380 |
+
logging.info("Start training")
|
| 381 |
+
train_stats = self.train_epoch(cur_epoch)
|
| 382 |
+
self.log_stats(split_name="train", stats=train_stats)
|
| 383 |
+
|
| 384 |
+
# evaluation phase
|
| 385 |
+
if len(self.valid_splits) > 0:
|
| 386 |
+
for split_name in self.valid_splits:
|
| 387 |
+
logging.info("Evaluating on {}.".format(split_name))
|
| 388 |
+
|
| 389 |
+
val_log = self.eval_epoch(
|
| 390 |
+
split_name=split_name, cur_epoch=cur_epoch
|
| 391 |
+
)
|
| 392 |
+
if val_log is not None:
|
| 393 |
+
if is_main_process():
|
| 394 |
+
assert (
|
| 395 |
+
"agg_metrics" in val_log
|
| 396 |
+
), "No agg_metrics found in validation log."
|
| 397 |
+
|
| 398 |
+
agg_metrics = val_log["agg_metrics"]
|
| 399 |
+
if agg_metrics > best_agg_metric and split_name == "val":
|
| 400 |
+
best_epoch, best_agg_metric = cur_epoch, agg_metrics
|
| 401 |
+
|
| 402 |
+
self._save_checkpoint(cur_epoch, is_best=True)
|
| 403 |
+
|
| 404 |
+
val_log.update({"best_epoch": best_epoch})
|
| 405 |
+
self.log_stats(val_log, split_name)
|
| 406 |
+
|
| 407 |
+
else:
|
| 408 |
+
# if no validation split is provided, we just save the checkpoint at the end of each epoch.
|
| 409 |
+
if not self.evaluate_only:
|
| 410 |
+
self._save_checkpoint(cur_epoch, is_best=False)
|
| 411 |
+
|
| 412 |
+
if self.evaluate_only:
|
| 413 |
+
break
|
| 414 |
+
|
| 415 |
+
if self.config.run_cfg.distributed:
|
| 416 |
+
dist.barrier()
|
| 417 |
+
|
| 418 |
+
# testing phase
|
| 419 |
+
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch
|
| 420 |
+
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only)
|
| 421 |
+
|
| 422 |
+
total_time = time.time() - start_time
|
| 423 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 424 |
+
logging.info("Training time {}".format(total_time_str))
|
| 425 |
+
|
| 426 |
+
def evaluate(self, cur_epoch="best", skip_reload=False):
|
| 427 |
+
test_logs = dict()
|
| 428 |
+
|
| 429 |
+
if len(self.test_splits) > 0:
|
| 430 |
+
for split_name in self.test_splits:
|
| 431 |
+
test_logs[split_name] = self.eval_epoch(
|
| 432 |
+
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
return test_logs
|
| 436 |
+
|
| 437 |
+
def train_epoch(self, epoch):
|
| 438 |
+
# train
|
| 439 |
+
self.model.train()
|
| 440 |
+
|
| 441 |
+
return self.task.train_epoch(
|
| 442 |
+
epoch=epoch,
|
| 443 |
+
model=self.model,
|
| 444 |
+
data_loader=self.train_loader,
|
| 445 |
+
optimizer=self.optimizer,
|
| 446 |
+
scaler=self.scaler,
|
| 447 |
+
lr_scheduler=self.lr_scheduler,
|
| 448 |
+
cuda_enabled=self.cuda_enabled,
|
| 449 |
+
log_freq=self.log_freq,
|
| 450 |
+
accum_grad_iters=self.accum_grad_iters,
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
@torch.no_grad()
|
| 454 |
+
def eval_epoch(self, split_name, cur_epoch, skip_reload=False):
|
| 455 |
+
"""
|
| 456 |
+
Evaluate the model on a given split.
|
| 457 |
+
|
| 458 |
+
Args:
|
| 459 |
+
split_name (str): name of the split to evaluate on.
|
| 460 |
+
cur_epoch (int): current epoch.
|
| 461 |
+
skip_reload_best (bool): whether to skip reloading the best checkpoint.
|
| 462 |
+
During training, we will reload the best checkpoint for validation.
|
| 463 |
+
During testing, we will use provided weights and skip reloading the best checkpoint .
|
| 464 |
+
"""
|
| 465 |
+
data_loader = self.dataloaders.get(split_name, None)
|
| 466 |
+
assert data_loader, "data_loader for split {} is None.".format(split_name)
|
| 467 |
+
|
| 468 |
+
# TODO In validation, you need to compute loss as well as metrics
|
| 469 |
+
# TODO consider moving to model.before_evaluation()
|
| 470 |
+
model = self.unwrap_dist_model(self.model)
|
| 471 |
+
if not skip_reload and cur_epoch == "best":
|
| 472 |
+
model = self._reload_best_model(model)
|
| 473 |
+
model.eval()
|
| 474 |
+
|
| 475 |
+
self.task.before_evaluation(
|
| 476 |
+
model=model,
|
| 477 |
+
dataset=self.datasets[split_name],
|
| 478 |
+
)
|
| 479 |
+
results = self.task.evaluation(model, data_loader)
|
| 480 |
+
|
| 481 |
+
if results is not None:
|
| 482 |
+
return self.task.after_evaluation(
|
| 483 |
+
val_result=results,
|
| 484 |
+
split_name=split_name,
|
| 485 |
+
epoch=cur_epoch,
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
def unwrap_dist_model(self, model):
|
| 489 |
+
if self.use_distributed:
|
| 490 |
+
return model.module
|
| 491 |
+
else:
|
| 492 |
+
return model
|
| 493 |
+
|
| 494 |
+
def create_loaders(
|
| 495 |
+
self,
|
| 496 |
+
datasets,
|
| 497 |
+
num_workers,
|
| 498 |
+
batch_sizes,
|
| 499 |
+
is_trains,
|
| 500 |
+
collate_fns,
|
| 501 |
+
dataset_ratios=None,
|
| 502 |
+
):
|
| 503 |
+
"""
|
| 504 |
+
Create dataloaders for training and validation.
|
| 505 |
+
"""
|
| 506 |
+
|
| 507 |
+
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn):
|
| 508 |
+
# create a single dataloader for each split
|
| 509 |
+
if isinstance(dataset, ChainDataset) or isinstance(
|
| 510 |
+
dataset, wds.DataPipeline
|
| 511 |
+
):
|
| 512 |
+
# wds.WebdDataset instance are chained together
|
| 513 |
+
# webdataset.DataPipeline has its own sampler and collate_fn
|
| 514 |
+
loader = iter(
|
| 515 |
+
DataLoader(
|
| 516 |
+
dataset,
|
| 517 |
+
batch_size=bsz,
|
| 518 |
+
num_workers=num_workers,
|
| 519 |
+
pin_memory=True,
|
| 520 |
+
)
|
| 521 |
+
)
|
| 522 |
+
else:
|
| 523 |
+
# map-style dataset are concatenated together
|
| 524 |
+
# setup distributed sampler
|
| 525 |
+
|
| 526 |
+
if self.use_distributed:
|
| 527 |
+
sampler = DistributedSampler(
|
| 528 |
+
dataset,
|
| 529 |
+
shuffle=is_train,
|
| 530 |
+
num_replicas=get_world_size(),
|
| 531 |
+
rank=get_rank(),
|
| 532 |
+
)
|
| 533 |
+
if not self.use_dist_eval_sampler:
|
| 534 |
+
# e.g. retrieval evaluation
|
| 535 |
+
sampler = sampler if is_train else None
|
| 536 |
+
else:
|
| 537 |
+
sampler = None
|
| 538 |
+
|
| 539 |
+
loader = DataLoader(
|
| 540 |
+
dataset,
|
| 541 |
+
batch_size=bsz,
|
| 542 |
+
num_workers=num_workers,
|
| 543 |
+
pin_memory=True,
|
| 544 |
+
sampler=sampler,
|
| 545 |
+
shuffle=sampler is None and is_train,
|
| 546 |
+
collate_fn=collate_fn,
|
| 547 |
+
drop_last=True if is_train else False,
|
| 548 |
+
)
|
| 549 |
+
loader = PrefetchLoader(loader)
|
| 550 |
+
|
| 551 |
+
if is_train:
|
| 552 |
+
loader = IterLoader(loader, use_distributed=self.use_distributed)
|
| 553 |
+
|
| 554 |
+
return loader
|
| 555 |
+
|
| 556 |
+
loaders = []
|
| 557 |
+
|
| 558 |
+
for dataset, bsz, is_train, collate_fn in zip(
|
| 559 |
+
datasets, batch_sizes, is_trains, collate_fns
|
| 560 |
+
):
|
| 561 |
+
if isinstance(dataset, list) or isinstance(dataset, tuple):
|
| 562 |
+
if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None:
|
| 563 |
+
dataset_ratios = [d.sample_ratio for d in dataset]
|
| 564 |
+
loader = MultiIterLoader(
|
| 565 |
+
loaders=[
|
| 566 |
+
_create_loader(d, num_workers, bsz[i], is_train, collate_fn[i])
|
| 567 |
+
for i, d in enumerate(dataset)
|
| 568 |
+
],
|
| 569 |
+
ratios=dataset_ratios,
|
| 570 |
+
)
|
| 571 |
+
else:
|
| 572 |
+
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn)
|
| 573 |
+
|
| 574 |
+
loaders.append(loader)
|
| 575 |
+
|
| 576 |
+
return loaders
|
| 577 |
+
|
| 578 |
+
@main_process
|
| 579 |
+
def _save_checkpoint(self, cur_epoch, is_best=False):
|
| 580 |
+
"""
|
| 581 |
+
Save the checkpoint at the current epoch.
|
| 582 |
+
"""
|
| 583 |
+
|
| 584 |
+
model_no_ddp = self.unwrap_dist_model(self.model)
|
| 585 |
+
param_grad_dic = {
|
| 586 |
+
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
|
| 587 |
+
}
|
| 588 |
+
state_dict = model_no_ddp.state_dict()
|
| 589 |
+
for k in list(state_dict.keys()):
|
| 590 |
+
if k in param_grad_dic.keys() and not param_grad_dic[k]:
|
| 591 |
+
# delete parameters that do not require gradient
|
| 592 |
+
del state_dict[k]
|
| 593 |
+
|
| 594 |
+
save_obj = {
|
| 595 |
+
"model": state_dict,
|
| 596 |
+
"optimizer": self.optimizer.state_dict(),
|
| 597 |
+
"config": self.config.to_dict(),
|
| 598 |
+
"scaler": self.scaler.state_dict() if self.scaler else None,
|
| 599 |
+
"epoch": cur_epoch,
|
| 600 |
+
}
|
| 601 |
+
save_to = os.path.join(
|
| 602 |
+
self.output_dir,
|
| 603 |
+
"checkpoint_{}.pth".format("best" if is_best else cur_epoch),
|
| 604 |
+
)
|
| 605 |
+
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to))
|
| 606 |
+
torch.save(save_obj, save_to)
|
| 607 |
+
|
| 608 |
+
def _reload_best_model(self, model):
|
| 609 |
+
"""
|
| 610 |
+
Load the best checkpoint for evaluation.
|
| 611 |
+
"""
|
| 612 |
+
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth")
|
| 613 |
+
|
| 614 |
+
logging.info("Loading checkpoint from {}.".format(checkpoint_path))
|
| 615 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 616 |
+
try:
|
| 617 |
+
model.load_state_dict(checkpoint["model"])
|
| 618 |
+
except RuntimeError as e:
|
| 619 |
+
logging.warning(
|
| 620 |
+
"""
|
| 621 |
+
Key mismatch when loading checkpoint. This is expected if only part of the model is saved.
|
| 622 |
+
Trying to load the model with strict=False.
|
| 623 |
+
"""
|
| 624 |
+
)
|
| 625 |
+
model.load_state_dict(checkpoint["model"], strict=False)
|
| 626 |
+
return model
|
| 627 |
+
|
| 628 |
+
def _load_checkpoint(self, url_or_filename):
|
| 629 |
+
"""
|
| 630 |
+
Resume from a checkpoint.
|
| 631 |
+
"""
|
| 632 |
+
if is_url(url_or_filename):
|
| 633 |
+
cached_file = download_cached_file(
|
| 634 |
+
url_or_filename, check_hash=False, progress=True
|
| 635 |
+
)
|
| 636 |
+
checkpoint = torch.load(cached_file, map_location=self.device)
|
| 637 |
+
elif os.path.isfile(url_or_filename):
|
| 638 |
+
checkpoint = torch.load(url_or_filename, map_location=self.device)
|
| 639 |
+
else:
|
| 640 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
| 641 |
+
|
| 642 |
+
state_dict = checkpoint["model"]
|
| 643 |
+
message = self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
|
| 644 |
+
|
| 645 |
+
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
| 646 |
+
if self.scaler and "scaler" in checkpoint:
|
| 647 |
+
self.scaler.load_state_dict(checkpoint["scaler"])
|
| 648 |
+
|
| 649 |
+
self.start_epoch = checkpoint["epoch"] + 1
|
| 650 |
+
print("resume the checkpoint")
|
| 651 |
+
logging.info("Resume checkpoint from {}".format(url_or_filename))
|
| 652 |
+
|
| 653 |
+
@main_process
|
| 654 |
+
def log_stats(self, stats, split_name):
|
| 655 |
+
if isinstance(stats, dict):
|
| 656 |
+
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}}
|
| 657 |
+
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
| 658 |
+
f.write(json.dumps(log_stats) + "\n")
|
| 659 |
+
elif isinstance(stats, list):
|
| 660 |
+
pass
|
| 661 |
+
|
| 662 |
+
@main_process
|
| 663 |
+
def log_config(self):
|
| 664 |
+
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
| 665 |
+
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
|
minigpt4/tasks/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from minigpt4.common.registry import registry
|
| 9 |
+
from minigpt4.tasks.base_task import BaseTask
|
| 10 |
+
from minigpt4.tasks.image_text_pretrain import ImageTextPretrainTask
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def setup_task(cfg):
|
| 14 |
+
assert "task" in cfg.run_cfg, "Task name must be provided."
|
| 15 |
+
|
| 16 |
+
task_name = cfg.run_cfg.task
|
| 17 |
+
task = registry.get_task_class(task_name).setup_task(cfg=cfg)
|
| 18 |
+
assert task is not None, "Task {} not properly registered.".format(task_name)
|
| 19 |
+
|
| 20 |
+
return task
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
__all__ = [
|
| 24 |
+
"BaseTask",
|
| 25 |
+
"ImageTextPretrainTask",
|
| 26 |
+
]
|
minigpt4/tasks/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (931 Bytes). View file
|
|
|
minigpt4/tasks/__pycache__/base_task.cpython-39.pyc
ADDED
|
Binary file (7.54 kB). View file
|
|
|
minigpt4/tasks/__pycache__/image_text_pretrain.cpython-39.pyc
ADDED
|
Binary file (1.12 kB). View file
|
|
|
minigpt4/tasks/base_task.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized
|
| 14 |
+
from minigpt4.common.logger import MetricLogger, SmoothedValue
|
| 15 |
+
from minigpt4.common.registry import registry
|
| 16 |
+
from minigpt4.datasets.data_utils import prepare_sample
|
| 17 |
+
import wandb
|
| 18 |
+
|
| 19 |
+
class BaseTask:
|
| 20 |
+
def __init__(self, **kwargs):
|
| 21 |
+
super().__init__()
|
| 22 |
+
|
| 23 |
+
self.inst_id_key = "instance_id"
|
| 24 |
+
self.cfg = ""
|
| 25 |
+
|
| 26 |
+
@classmethod
|
| 27 |
+
def setup_task(cls, **kwargs):
|
| 28 |
+
return cls()
|
| 29 |
+
|
| 30 |
+
def build_model(self, cfg):
|
| 31 |
+
self.cfg = cfg
|
| 32 |
+
model_config = cfg.model_cfg
|
| 33 |
+
|
| 34 |
+
model_cls = registry.get_model_class(model_config.arch)
|
| 35 |
+
return model_cls.from_config(model_config)
|
| 36 |
+
|
| 37 |
+
def build_datasets(self, cfg):
|
| 38 |
+
"""
|
| 39 |
+
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
|
| 40 |
+
Download dataset and annotations automatically if not exist.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
cfg (common.config.Config): _description_
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
dict: Dictionary of torch.utils.data.Dataset objects by split.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
datasets = dict()
|
| 50 |
+
|
| 51 |
+
datasets_config = cfg.datasets_cfg
|
| 52 |
+
|
| 53 |
+
assert len(datasets_config) > 0, "At least one dataset has to be specified."
|
| 54 |
+
|
| 55 |
+
for name in datasets_config:
|
| 56 |
+
dataset_config = datasets_config[name]
|
| 57 |
+
|
| 58 |
+
builder = registry.get_builder_class(name)(dataset_config)
|
| 59 |
+
dataset = builder.build_datasets()
|
| 60 |
+
|
| 61 |
+
dataset['train'].name = name
|
| 62 |
+
if 'sample_ratio' in dataset_config:
|
| 63 |
+
dataset['train'].sample_ratio = dataset_config.sample_ratio
|
| 64 |
+
|
| 65 |
+
datasets[name] = dataset
|
| 66 |
+
|
| 67 |
+
return datasets
|
| 68 |
+
|
| 69 |
+
def train_step(self, model, samples):
|
| 70 |
+
outputs = model(samples)
|
| 71 |
+
# loss = outputs["loss"] + outputs["emos_loss"]
|
| 72 |
+
loss = outputs["emos_loss"]
|
| 73 |
+
# print(outputs["loss"], outputs["emos_loss"], torch.argmax(outputs['emos_pred'], dim=1), outputs["emotion"])
|
| 74 |
+
|
| 75 |
+
return loss
|
| 76 |
+
|
| 77 |
+
def valid_step(self, model, samples):
|
| 78 |
+
raise NotImplementedError
|
| 79 |
+
|
| 80 |
+
def before_evaluation(self, model, dataset, **kwargs):
|
| 81 |
+
model.before_evaluation(dataset=dataset, task_type=type(self))
|
| 82 |
+
|
| 83 |
+
def after_evaluation(self, **kwargs):
|
| 84 |
+
pass
|
| 85 |
+
|
| 86 |
+
def inference_step(self):
|
| 87 |
+
raise NotImplementedError
|
| 88 |
+
|
| 89 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
| 90 |
+
metric_logger = MetricLogger(delimiter=" ")
|
| 91 |
+
header = "Evaluation"
|
| 92 |
+
# TODO make it configurable
|
| 93 |
+
print_freq = 10
|
| 94 |
+
|
| 95 |
+
results = []
|
| 96 |
+
|
| 97 |
+
for samples in metric_logger.log_every(data_loader, print_freq, header):
|
| 98 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
| 99 |
+
|
| 100 |
+
eval_output = self.valid_step(model=model, samples=samples)
|
| 101 |
+
results.extend(eval_output)
|
| 102 |
+
|
| 103 |
+
if is_dist_avail_and_initialized():
|
| 104 |
+
dist.barrier()
|
| 105 |
+
|
| 106 |
+
return results
|
| 107 |
+
|
| 108 |
+
def train_epoch(
|
| 109 |
+
self,
|
| 110 |
+
epoch,
|
| 111 |
+
model,
|
| 112 |
+
data_loader,
|
| 113 |
+
optimizer,
|
| 114 |
+
lr_scheduler,
|
| 115 |
+
scaler=None,
|
| 116 |
+
cuda_enabled=False,
|
| 117 |
+
log_freq=50,
|
| 118 |
+
accum_grad_iters=1,
|
| 119 |
+
):
|
| 120 |
+
return self._train_inner_loop(
|
| 121 |
+
epoch=epoch,
|
| 122 |
+
iters_per_epoch=lr_scheduler.iters_per_epoch,
|
| 123 |
+
model=model,
|
| 124 |
+
data_loader=data_loader,
|
| 125 |
+
optimizer=optimizer,
|
| 126 |
+
scaler=scaler,
|
| 127 |
+
lr_scheduler=lr_scheduler,
|
| 128 |
+
log_freq=log_freq,
|
| 129 |
+
cuda_enabled=cuda_enabled,
|
| 130 |
+
accum_grad_iters=accum_grad_iters,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def train_iters(
|
| 134 |
+
self,
|
| 135 |
+
epoch,
|
| 136 |
+
start_iters,
|
| 137 |
+
iters_per_inner_epoch,
|
| 138 |
+
model,
|
| 139 |
+
data_loader,
|
| 140 |
+
optimizer,
|
| 141 |
+
lr_scheduler,
|
| 142 |
+
scaler=None,
|
| 143 |
+
cuda_enabled=False,
|
| 144 |
+
log_freq=50,
|
| 145 |
+
accum_grad_iters=1,
|
| 146 |
+
):
|
| 147 |
+
return self._train_inner_loop(
|
| 148 |
+
epoch=epoch,
|
| 149 |
+
start_iters=start_iters,
|
| 150 |
+
iters_per_epoch=iters_per_inner_epoch,
|
| 151 |
+
model=model,
|
| 152 |
+
data_loader=data_loader,
|
| 153 |
+
optimizer=optimizer,
|
| 154 |
+
scaler=scaler,
|
| 155 |
+
lr_scheduler=lr_scheduler,
|
| 156 |
+
log_freq=log_freq,
|
| 157 |
+
cuda_enabled=cuda_enabled,
|
| 158 |
+
accum_grad_iters=accum_grad_iters,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def _train_inner_loop(
|
| 162 |
+
self,
|
| 163 |
+
epoch,
|
| 164 |
+
iters_per_epoch,
|
| 165 |
+
model,
|
| 166 |
+
data_loader,
|
| 167 |
+
optimizer,
|
| 168 |
+
lr_scheduler,
|
| 169 |
+
scaler=None,
|
| 170 |
+
start_iters=None,
|
| 171 |
+
log_freq=50,
|
| 172 |
+
cuda_enabled=False,
|
| 173 |
+
accum_grad_iters=1,
|
| 174 |
+
):
|
| 175 |
+
"""
|
| 176 |
+
An inner training loop compatible with both epoch-based and iter-based training.
|
| 177 |
+
|
| 178 |
+
When using epoch-based, training stops after one epoch; when using iter-based,
|
| 179 |
+
training stops after #iters_per_epoch iterations.
|
| 180 |
+
"""
|
| 181 |
+
use_amp = scaler is not None
|
| 182 |
+
|
| 183 |
+
if not hasattr(data_loader, "__next__"):
|
| 184 |
+
# convert to iterator if not already
|
| 185 |
+
data_loader = iter(data_loader)
|
| 186 |
+
|
| 187 |
+
metric_logger = MetricLogger(delimiter=" ")
|
| 188 |
+
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
|
| 189 |
+
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}"))
|
| 190 |
+
|
| 191 |
+
# if iter-based runner, schedule lr based on inner epoch.
|
| 192 |
+
logging.info(
|
| 193 |
+
"Start training epoch {}, {} iters per inner epoch.".format(
|
| 194 |
+
epoch, iters_per_epoch
|
| 195 |
+
)
|
| 196 |
+
)
|
| 197 |
+
header = "Train: data epoch: [{}]".format(epoch)
|
| 198 |
+
if start_iters is None:
|
| 199 |
+
# epoch-based runner
|
| 200 |
+
inner_epoch = epoch
|
| 201 |
+
else:
|
| 202 |
+
# In iter-based runner, we schedule the learning rate based on iterations.
|
| 203 |
+
inner_epoch = start_iters // iters_per_epoch
|
| 204 |
+
header = header + "; inner epoch [{}]".format(inner_epoch)
|
| 205 |
+
|
| 206 |
+
image_list = []
|
| 207 |
+
caption_list = []
|
| 208 |
+
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
|
| 209 |
+
# if using iter-based runner, we stop after iters_per_epoch iterations.
|
| 210 |
+
if i >= iters_per_epoch:
|
| 211 |
+
break
|
| 212 |
+
|
| 213 |
+
samples = next(data_loader)
|
| 214 |
+
image_list.append(samples['image_id'])
|
| 215 |
+
caption_list.append(samples['answer'])
|
| 216 |
+
|
| 217 |
+
samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
|
| 218 |
+
samples.update(
|
| 219 |
+
{
|
| 220 |
+
"epoch": inner_epoch,
|
| 221 |
+
"num_iters_per_epoch": iters_per_epoch,
|
| 222 |
+
"iters": i,
|
| 223 |
+
}
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
|
| 227 |
+
|
| 228 |
+
with torch.cuda.amp.autocast(enabled=use_amp):
|
| 229 |
+
loss = self.train_step(model=model, samples=samples)
|
| 230 |
+
|
| 231 |
+
# after_train_step()
|
| 232 |
+
if use_amp:
|
| 233 |
+
scaler.scale(loss).backward()
|
| 234 |
+
else:
|
| 235 |
+
loss.backward()
|
| 236 |
+
|
| 237 |
+
# update gradients every accum_grad_iters iterations
|
| 238 |
+
if (i + 1) % accum_grad_iters == 0:
|
| 239 |
+
if use_amp:
|
| 240 |
+
scaler.step(optimizer)
|
| 241 |
+
scaler.update()
|
| 242 |
+
else:
|
| 243 |
+
optimizer.step()
|
| 244 |
+
optimizer.zero_grad()
|
| 245 |
+
# if self.cfg.wandb_log:
|
| 246 |
+
if self.cfg.run_cfg.wandb_log:
|
| 247 |
+
wandb.log({"epoch": inner_epoch, "loss": loss})
|
| 248 |
+
metric_logger.update(loss=loss.item())
|
| 249 |
+
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
| 250 |
+
|
| 251 |
+
# Print the learning rate for attention parameters
|
| 252 |
+
for param_group in optimizer.param_groups:
|
| 253 |
+
if "attention" in param_group.get("params", []):
|
| 254 |
+
print("Attention LR:", param_group["lr"])
|
| 255 |
+
|
| 256 |
+
# save random samples' name
|
| 257 |
+
save_dir = "/home/user/project/Emotion-LLaMA/checkpoints/run_samples"
|
| 258 |
+
save_to = os.path.join(
|
| 259 |
+
save_dir,
|
| 260 |
+
"epoch_{}.txt".format(epoch),
|
| 261 |
+
)
|
| 262 |
+
with open(save_to, 'w') as file:
|
| 263 |
+
for i in range(len(image_list)):
|
| 264 |
+
name = image_list[i]
|
| 265 |
+
caption = caption_list[i]
|
| 266 |
+
file.write(name[0] + " " + caption[0] + '\n')
|
| 267 |
+
|
| 268 |
+
# after train_epoch()
|
| 269 |
+
# gather the stats from all processes
|
| 270 |
+
metric_logger.synchronize_between_processes()
|
| 271 |
+
logging.info("Averaged stats: " + str(metric_logger.global_avg()))
|
| 272 |
+
return {
|
| 273 |
+
k: "{:.6f}".format(meter.global_avg)
|
| 274 |
+
for k, meter in metric_logger.meters.items()
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
@staticmethod
|
| 278 |
+
def save_result(result, result_dir, filename, remove_duplicate=""):
|
| 279 |
+
import json
|
| 280 |
+
|
| 281 |
+
result_file = os.path.join(
|
| 282 |
+
result_dir, "%s_rank%d.json" % (filename, get_rank())
|
| 283 |
+
)
|
| 284 |
+
final_result_file = os.path.join(result_dir, "%s.json" % filename)
|
| 285 |
+
|
| 286 |
+
json.dump(result, open(result_file, "w"))
|
| 287 |
+
|
| 288 |
+
if is_dist_avail_and_initialized():
|
| 289 |
+
dist.barrier()
|
| 290 |
+
|
| 291 |
+
if is_main_process():
|
| 292 |
+
logging.warning("rank %d starts merging results." % get_rank())
|
| 293 |
+
# combine results from all processes
|
| 294 |
+
result = []
|
| 295 |
+
|
| 296 |
+
for rank in range(get_world_size()):
|
| 297 |
+
result_file = os.path.join(
|
| 298 |
+
result_dir, "%s_rank%d.json" % (filename, rank)
|
| 299 |
+
)
|
| 300 |
+
res = json.load(open(result_file, "r"))
|
| 301 |
+
result += res
|
| 302 |
+
|
| 303 |
+
if remove_duplicate:
|
| 304 |
+
result_new = []
|
| 305 |
+
id_list = []
|
| 306 |
+
for res in result:
|
| 307 |
+
if res[remove_duplicate] not in id_list:
|
| 308 |
+
id_list.append(res[remove_duplicate])
|
| 309 |
+
result_new.append(res)
|
| 310 |
+
result = result_new
|
| 311 |
+
|
| 312 |
+
json.dump(result, open(final_result_file, "w"))
|
| 313 |
+
print("result file saved to %s" % final_result_file)
|
| 314 |
+
|
| 315 |
+
return final_result_file
|
minigpt4/tasks/image_text_pretrain.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from minigpt4.common.registry import registry
|
| 9 |
+
from minigpt4.tasks.base_task import BaseTask
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@registry.register_task("image_text_pretrain")
|
| 13 |
+
class ImageTextPretrainTask(BaseTask):
|
| 14 |
+
def __init__(self):
|
| 15 |
+
super().__init__()
|
| 16 |
+
|
| 17 |
+
def evaluation(self, model, data_loader, cuda_enabled=True):
|
| 18 |
+
print("-----evaluation----")
|
| 19 |
+
# pass
|