Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,65 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
from transformers import (
|
5 |
-
BlipProcessor,
|
6 |
-
BlipForConditionalGeneration,
|
7 |
-
AutoTokenizer,
|
8 |
-
AutoModelForSeq2SeqLM
|
9 |
-
)
|
10 |
-
from typing import Union
|
11 |
-
from gtts import gTTS
|
12 |
-
import os
|
13 |
-
|
14 |
-
class ImageCaptionPipeline:
|
15 |
-
def __init__(self):
|
16 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
18 |
-
self.blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(self.device)
|
19 |
-
self.translator_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
20 |
-
self.translator_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru").to(self.device)
|
21 |
-
|
22 |
-
def generate_caption(self, image: Union[str, Image.Image], language: str = "Русский") -> str:
|
23 |
-
if isinstance(image, str):
|
24 |
-
image = Image.open(image)
|
25 |
-
image = image.convert("RGB")
|
26 |
-
inputs = self.blip_processor(images=image, return_tensors="pt").to(self.device)
|
27 |
-
with torch.no_grad():
|
28 |
-
output_ids = self.blip_model.generate(**inputs, max_length=200, num_beams=4)
|
29 |
-
english_caption = self.blip_processor.decode(output_ids[0], skip_special_tokens=True)
|
30 |
-
if language == "Русский":
|
31 |
-
translated_inputs = self.translator_tokenizer(english_caption, return_tensors="pt", padding=True).to(self.device)
|
32 |
-
with torch.no_grad():
|
33 |
-
translated_ids = self.translator_model.generate(**translated_inputs, max_length=200, num_beams=4)
|
34 |
-
russian_caption = self.translator_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
35 |
-
return russian_caption
|
36 |
-
return english_caption
|
37 |
-
|
38 |
-
def app(image: Image.Image, language: str) -> tuple:
|
39 |
-
if image is not None:
|
40 |
-
pipeline = ImageCaptionPipeline()
|
41 |
-
caption = pipeline.generate_caption(image, language=language)
|
42 |
-
lang_code = "ru" if language == "Русский" else "en"
|
43 |
-
tts = gTTS(text=caption, lang=lang_code)
|
44 |
-
audio_path = "caption_audio.mp3"
|
45 |
-
tts.save(audio_path)
|
46 |
-
return caption, audio_path
|
47 |
-
return "Загрузите изображение и выберите язык для получения подписи.", None
|
48 |
-
|
49 |
-
with gr.Blocks() as iface:
|
50 |
-
gr.Markdown("# Генератор подписей")
|
51 |
-
gr.Markdown("Загрузите изображение и выберите язык.")
|
52 |
-
language = gr.Dropdown(choices=["Русский", "English"], label="Язык", value="Русский")
|
53 |
-
image = gr.Image(type="pil", label="Изображение", height=400, width=400)
|
54 |
-
submit_button = gr.Button("Сгенерировать", elem_classes="btn")
|
55 |
-
caption_output = gr.Textbox(label="Подпись")
|
56 |
-
audio_output = gr.Audio(label="Озвучка")
|
57 |
-
|
58 |
-
submit_button.click(
|
59 |
-
fn=app,
|
60 |
-
inputs=[image, language],
|
61 |
-
outputs=[caption_output, audio_output]
|
62 |
-
)
|
63 |
-
|
64 |
-
if __name__ == "__main__":
|
65 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import (
|
5 |
+
BlipProcessor,
|
6 |
+
BlipForConditionalGeneration,
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModelForSeq2SeqLM
|
9 |
+
)
|
10 |
+
from typing import Union
|
11 |
+
from gtts import gTTS
|
12 |
+
import os
|
13 |
+
|
14 |
+
class ImageCaptionPipeline:
|
15 |
+
def __init__(self):
|
16 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large", use_fast=True)
|
18 |
+
self.blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(self.device)
|
19 |
+
self.translator_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
20 |
+
self.translator_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru").to(self.device)
|
21 |
+
|
22 |
+
def generate_caption(self, image: Union[str, Image.Image], language: str = "Русский") -> str:
|
23 |
+
if isinstance(image, str):
|
24 |
+
image = Image.open(image)
|
25 |
+
image = image.convert("RGB")
|
26 |
+
inputs = self.blip_processor(images=image, return_tensors="pt").to(self.device)
|
27 |
+
with torch.no_grad():
|
28 |
+
output_ids = self.blip_model.generate(**inputs, max_length=200, num_beams=4)
|
29 |
+
english_caption = self.blip_processor.decode(output_ids[0], skip_special_tokens=True)
|
30 |
+
if language == "Русский":
|
31 |
+
translated_inputs = self.translator_tokenizer(english_caption, return_tensors="pt", padding=True).to(self.device)
|
32 |
+
with torch.no_grad():
|
33 |
+
translated_ids = self.translator_model.generate(**translated_inputs, max_length=200, num_beams=4)
|
34 |
+
russian_caption = self.translator_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
35 |
+
return russian_caption
|
36 |
+
return english_caption
|
37 |
+
|
38 |
+
def app(image: Image.Image, language: str) -> tuple:
|
39 |
+
if image is not None:
|
40 |
+
pipeline = ImageCaptionPipeline()
|
41 |
+
caption = pipeline.generate_caption(image, language=language)
|
42 |
+
lang_code = "ru" if language == "Русский" else "en"
|
43 |
+
tts = gTTS(text=caption, lang=lang_code)
|
44 |
+
audio_path = "caption_audio.mp3"
|
45 |
+
tts.save(audio_path)
|
46 |
+
return caption, audio_path
|
47 |
+
return "Загрузите изображение и выберите язык для получения подписи.", None
|
48 |
+
|
49 |
+
with gr.Blocks() as iface:
|
50 |
+
gr.Markdown("# Генератор подписей")
|
51 |
+
gr.Markdown("Загрузите изображение и выберите язык.")
|
52 |
+
language = gr.Dropdown(choices=["Русский", "English"], label="Язык", value="Русский")
|
53 |
+
image = gr.Image(type="pil", label="Изображение", height=400, width=400)
|
54 |
+
submit_button = gr.Button("Сгенерировать", elem_classes="btn")
|
55 |
+
caption_output = gr.Textbox(label="Подпись")
|
56 |
+
audio_output = gr.Audio(label="Озвучка")
|
57 |
+
|
58 |
+
submit_button.click(
|
59 |
+
fn=app,
|
60 |
+
inputs=[image, language],
|
61 |
+
outputs=[caption_output, audio_output]
|
62 |
+
)
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
iface.launch()
|