Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- Dockerfile +11 -0
- main.py +43 -0
- requirements.txt +3 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["gunicorn", "-b","0.0.0.0:7860" "main:app"]
|
main.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask,render_template,url_for,request
|
2 |
+
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# name = 'Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset'
|
5 |
+
|
6 |
+
# tokenizer = AutoTokenizer.from_pretrained(name)
|
7 |
+
# model = AutoModelForSequenceClassification.from_pretrained('/Users/jorgemeneumoreno/Desktop/FakeNewsClassifier/model', max_position_embeddings=512)
|
8 |
+
|
9 |
+
#pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
10 |
+
# Use a pipeline as a high-level helper
|
11 |
+
from transformers import pipeline
|
12 |
+
pipe = pipeline("text-classification", model="Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset")
|
13 |
+
|
14 |
+
# Load model directly
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset")
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained('model', max_position_embeddings=512)
|
18 |
+
|
19 |
+
application = app = Flask(__name__)
|
20 |
+
|
21 |
+
@application.route('/')
|
22 |
+
def home():
|
23 |
+
return render_template('home.html')
|
24 |
+
@application.route('/predict',methods=['POST'])
|
25 |
+
|
26 |
+
def predict():
|
27 |
+
if request.method == 'POST':
|
28 |
+
input_message = request.form['message']
|
29 |
+
if len(input_message)>=511:
|
30 |
+
input_message= input_message[0:512]
|
31 |
+
if input_message.strip() == "":
|
32 |
+
result="Please enter the body of an article"
|
33 |
+
my_input = [input_message]
|
34 |
+
preds = pipe(my_input, return_all_scores=True)
|
35 |
+
output_dict = {'Real': preds[0][0]['score'], 'Fake': preds[0][1]['score']}
|
36 |
+
print(output_dict)
|
37 |
+
print(list(output_dict.keys()), list(output_dict.values()))
|
38 |
+
props = [(round(float(v)*100, 2)) for v in list(output_dict.values())]
|
39 |
+
print(props)
|
40 |
+
return render_template('result.html', mess = input_message, classes = list(output_dict.keys()), props=props)
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
app.run(port=5000,debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
transformers
|
3 |
+
gunicorn
|