agh123's picture
feat: add Glicko2 ranking
94a1f00
raw
history blame
5.55 kB
import asyncio
import streamlit as st
import pandas as pd
from typing import Optional, List, Set, Tuple, Dict, Any
from .components.filters import render_table_filters
from .components.visualizations import (
render_leaderboard_table,
render_performance_plots,
render_device_rankings,
)
from .components.header import render_header, render_contribution_guide
from .components.rankings import render_algorithm_rankings
from .components.device_comparison import render_device_comparison
from .services.firebase import fetch_leaderboard_data
from .core.styles import CUSTOM_CSS
from .core.scoring import (
calculate_performance_score,
get_performance_metrics,
StandardBenchmarkConditions,
)
def get_filter_values(
df: pd.DataFrame,
) -> tuple[
List[str],
List[str],
List[str],
List[str],
List[str],
Tuple[int, int],
Tuple[int, int],
Tuple[int, int],
List[str],
int,
]:
"""Get unique values for filters"""
models = sorted(df["Model ID"].unique().tolist())
platforms = sorted(df["Platform"].unique().tolist())
devices = sorted(df["Device"].unique().tolist())
cache_type_v = sorted(df["cache_type_v"].unique().tolist())
cache_type_k = sorted(df["cache_type_k"].unique().tolist())
n_threads = (df["n_threads"].min(), df["n_threads"].max())
max_n_gpu_layers = (0, max(df["n_gpu_layers"].unique().tolist()))
pp_range = (df["PP Config"].min(), df["PP Config"].max())
tg_range = (df["TG Config"].min(), df["TG Config"].max())
versions = sorted(df["Version"].unique().tolist())
return (
models,
platforms,
devices,
cache_type_v,
cache_type_k,
pp_range,
tg_range,
n_threads,
versions,
max_n_gpu_layers,
)
def render_performance_metrics(metrics: Dict[str, Any]):
"""Render performance metrics in a nice grid"""
st.markdown("### πŸ† Performance Overview")
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("Top Device", metrics["top_device"])
with col2:
st.metric("Top Score", f"{metrics['top_score']:.1f}")
with col3:
st.metric("Average Score", f"{metrics['avg_score']:.1f}")
with col4:
st.metric("Total Devices", metrics["total_devices"])
with col5:
st.metric("Total Models", metrics["total_models"])
async def main():
"""Main application entry point"""
st.set_page_config(
page_title="AI Phone Benchmark Leaderboard",
page_icon="πŸ“±",
layout="wide",
)
# Apply custom styles
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
# Fetch initial data
df = await fetch_leaderboard_data()
if df.empty:
st.error("No data available. Please check your connection and try again.")
return
# Calculate performance scores
df = calculate_performance_score(df)
metrics = get_performance_metrics(df)
# Render header
render_header()
# Get unique values for filters
(
models,
platforms,
devices,
cache_type_v,
cache_type_k,
pp_range,
tg_range,
n_threads,
versions,
max_n_gpu_layers,
) = get_filter_values(df)
# Create main layout with sidebar for contribution guide
if "show_guide" not in st.session_state:
st.session_state.show_guide = True
main_col, guide_col = st.columns(
[
0.9 if not st.session_state.show_guide else 0.8,
0.1 if not st.session_state.show_guide else 0.2,
]
)
with main_col:
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(
[
"Device Rankings",
"Benchmark Results",
"βš”οΈ Device Duel",
]
)
with tab1:
# Device rankings view
st.title("πŸ† Device Rankings")
# Show standardization notice
std = StandardBenchmarkConditions()
st.info(
f"πŸ“Š Rankings are based on benchmarks with standard conditions: "
f"PP={std.PP_CONFIG} tokens, TG={std.TG_CONFIG} tokens. "
f"The rankings are based on the Glicko-2 algorithm."
)
# Render performance metrics
# render_performance_metrics(metrics)
# Render device rankings
render_device_rankings(df)
with tab2:
# Original benchmark view
table_filters = render_table_filters(
models,
platforms,
devices,
cache_type_v,
cache_type_k,
pp_range,
tg_range,
n_threads,
versions,
max_n_gpu_layers,
)
# Render the main leaderboard table
render_leaderboard_table(df, table_filters)
# Render plot section
st.markdown("---")
# Render performance plots with table filters
render_performance_plots(df, table_filters)
with tab3:
# Device comparison view
# Get list of normalized device IDs for the device comparison
normalized_device_ids = sorted(df["Normalized Device ID"].unique().tolist())
render_device_comparison(df, normalized_device_ids)
with guide_col:
render_contribution_guide()
if __name__ == "__main__":
asyncio.run(main())