File size: 2,437 Bytes
cd5b6a8
5d56f39
 
 
d4ae976
 
 
 
e67deaf
719919b
d4ae976
5d56f39
 
d4ae976
5d56f39
 
 
d4ae976
5d56f39
d4ae976
 
 
 
 
 
 
 
 
 
 
5d56f39
d4ae976
 
 
5d56f39
d4ae976
 
 
 
 
5d56f39
d4ae976
 
cd5b6a8
d4ae976
 
 
5d56f39
d4ae976
 
5d56f39
d4ae976
 
5d56f39
d4ae976
 
 
 
5d56f39
d4ae976
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from pathlib import Path
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFaceHub

class KnowledgeManager:
    def __init__(self, knowledge_dir="."):  # root dir by default
        self.knowledge_dir = Path(knowledge_dir)
        self.documents = []
        self.embeddings = None
        self.vectorstore = None
        self.retriever = None
        self.llm = None
        self.qa_chain = None

        self._load_documents()
        if self.documents:
            self._initialize_embeddings()
            self._initialize_vectorstore()
            self._initialize_llm()
            self._initialize_qa_chain()

    def _load_documents(self):
        if not self.knowledge_dir.exists():
            raise FileNotFoundError(f"Directory {self.knowledge_dir} does not exist.")
        
        files = list(self.knowledge_dir.glob("*.txt"))
        if not files:
            raise FileNotFoundError(f"No .txt files found in {self.knowledge_dir}. Please upload your knowledge base files in root.")
        
        for file in files:
            loader = TextLoader(str(file))
            self.documents.extend(loader.load())
        
        splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
        self.documents = splitter.split_documents(self.documents)

    def _initialize_embeddings(self):
        self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

    def _initialize_vectorstore(self):
        self.vectorstore = FAISS.from_documents(self.documents, self.embeddings)
        self.retriever = self.vectorstore.as_retriever()

    def _initialize_llm(self):
        self.llm = HuggingFaceHub(repo_id="google/flan-t5-small", model_kwargs={"temperature":0, "max_length":256})

    def _initialize_qa_chain(self):
        self.qa_chain = RetrievalQA.from_chain_type(llm=self.llm, chain_type="stuff", retriever=self.retriever)

    def ask(self, query):
        if not self.qa_chain:
            return "Knowledge base not initialized properly."
        return self.qa_chain.run(query)

    def get_knowledge_summary(self):
        return f"Loaded {len(self.documents)} document chunks from {self.knowledge_dir}"