Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +12 -25
knowledge_engine.py
CHANGED
@@ -3,7 +3,7 @@ from langchain.vectorstores import FAISS
|
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
-
from transformers import
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
|
9 |
class KnowledgeManager:
|
@@ -12,38 +12,23 @@ class KnowledgeManager:
|
|
12 |
self.docsearch = None
|
13 |
self.qa_chain = None
|
14 |
self.llm = None
|
|
|
15 |
|
16 |
self._initialize_llm()
|
17 |
self._initialize_embeddings()
|
18 |
self._load_knowledge_base()
|
19 |
|
20 |
def _initialize_llm(self):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
25 |
-
model_id,
|
26 |
-
trust_remote_code=True,
|
27 |
-
torch_dtype="auto", # Will use float16 on GPU, float32 on CPU
|
28 |
-
device_map="auto"
|
29 |
-
)
|
30 |
-
|
31 |
-
falcon_pipeline = pipeline(
|
32 |
-
"text-generation",
|
33 |
-
model=model,
|
34 |
-
tokenizer=tokenizer,
|
35 |
-
max_new_tokens=512,
|
36 |
-
temperature=0.7,
|
37 |
-
top_p=0.95,
|
38 |
-
repetition_penalty=1.1
|
39 |
-
)
|
40 |
-
|
41 |
-
self.llm = HuggingFacePipeline(pipeline=falcon_pipeline)
|
42 |
|
43 |
def _initialize_embeddings(self):
|
|
|
44 |
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
45 |
|
46 |
def _load_knowledge_base(self):
|
|
|
47 |
txt_files = [f for f in os.listdir(self.root_dir) if f.endswith(".txt")]
|
48 |
|
49 |
if not txt_files:
|
@@ -53,16 +38,18 @@ class KnowledgeManager:
|
|
53 |
for filename in txt_files:
|
54 |
path = os.path.join(self.root_dir, filename)
|
55 |
with open(path, "r", encoding="utf-8") as f:
|
56 |
-
|
57 |
-
all_texts.append(content)
|
58 |
|
59 |
full_text = "\n\n".join(all_texts)
|
60 |
|
|
|
61 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
62 |
docs = text_splitter.create_documents([full_text])
|
63 |
|
|
|
64 |
self.docsearch = FAISS.from_documents(docs, self.embeddings)
|
65 |
|
|
|
66 |
self.qa_chain = RetrievalQA.from_chain_type(
|
67 |
llm=self.llm,
|
68 |
chain_type="stuff",
|
@@ -74,4 +61,4 @@ class KnowledgeManager:
|
|
74 |
if not self.qa_chain:
|
75 |
raise ValueError("Knowledge base not initialized.")
|
76 |
result = self.qa_chain(query)
|
77 |
-
return result[
|
|
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
+
from transformers import pipeline
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
|
9 |
class KnowledgeManager:
|
|
|
12 |
self.docsearch = None
|
13 |
self.qa_chain = None
|
14 |
self.llm = None
|
15 |
+
self.embeddings = None
|
16 |
|
17 |
self._initialize_llm()
|
18 |
self._initialize_embeddings()
|
19 |
self._load_knowledge_base()
|
20 |
|
21 |
def _initialize_llm(self):
|
22 |
+
# Load local text2text model using HuggingFace pipeline (FLAN-T5 small)
|
23 |
+
local_pipe = pipeline("text2text-generation", model="google/flan-t5-small", max_length=1024)
|
24 |
+
self.llm = HuggingFacePipeline(pipeline=local_pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def _initialize_embeddings(self):
|
27 |
+
# Use general-purpose sentence transformer
|
28 |
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
29 |
|
30 |
def _load_knowledge_base(self):
|
31 |
+
# Automatically find all .txt files in the root directory
|
32 |
txt_files = [f for f in os.listdir(self.root_dir) if f.endswith(".txt")]
|
33 |
|
34 |
if not txt_files:
|
|
|
38 |
for filename in txt_files:
|
39 |
path = os.path.join(self.root_dir, filename)
|
40 |
with open(path, "r", encoding="utf-8") as f:
|
41 |
+
all_texts.append(f.read())
|
|
|
42 |
|
43 |
full_text = "\n\n".join(all_texts)
|
44 |
|
45 |
+
# Split text into chunks for embedding
|
46 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
47 |
docs = text_splitter.create_documents([full_text])
|
48 |
|
49 |
+
# Create FAISS vector store
|
50 |
self.docsearch = FAISS.from_documents(docs, self.embeddings)
|
51 |
|
52 |
+
# Build the QA chain
|
53 |
self.qa_chain = RetrievalQA.from_chain_type(
|
54 |
llm=self.llm,
|
55 |
chain_type="stuff",
|
|
|
61 |
if not self.qa_chain:
|
62 |
raise ValueError("Knowledge base not initialized.")
|
63 |
result = self.qa_chain(query)
|
64 |
+
return result['result']
|