Spaces:
Sleeping
Sleeping
# ------------- app.py ------------- | |
import streamlit as st | |
from pathlib import Path | |
from io import BytesIO | |
import pdfplumber, pytesseract, time, re, logging, os | |
from PIL import Image | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from sentence_transformers import SentenceTransformer | |
from transformers import pipeline | |
import numpy as np | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
############################################################################### | |
# Page layout | |
############################################################################### | |
st.set_page_config(page_title="PDF Chat & Summarize", layout="wide") | |
st.markdown(""" | |
<style> | |
.block-container { padding-top: 1rem; padding-bottom: 0; } | |
.stTabs [data-baseweb="tab-list"] { gap: 4px; } | |
.stTabs [data-baseweb="tab"] { padding: 8px 24px; } | |
.chat-msg { padding: 0.5rem 1rem; border-radius: 8px; margin: 0.3rem 0; } | |
.user { background-color: #e3f2fd; margin-left: 20%; } | |
.assistant { background-color: #f1f3f4; margin-right: 20%; } | |
</style> | |
""", unsafe_allow_html=True) | |
############################################################################### | |
# Cached heavy objects | |
############################################################################### | |
def load_embed(): | |
return SentenceTransformer("all-MiniLM-L6-v2") | |
def load_qa(): | |
return pipeline("text2text-generation", model="google/flan-t5-large", max_length=512) | |
def load_sum(): | |
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250) | |
embed = load_embed() | |
qa_pipe = load_qa() | |
sum_pipe = load_sum() | |
############################################################################### | |
# Helpers | |
############################################################################### | |
def extract_pdf(uploaded_file): | |
"""Return (plain text, image_list)""" | |
text = "" | |
images = [] | |
with pdfplumber.open(BytesIO(uploaded_file.getbuffer())) as pdf: | |
for page in pdf.pages: | |
txt = page.extract_text_layout() or page.extract_text() | |
if not txt: | |
img = page.to_image(resolution=200).original | |
txt = pytesseract.image_to_string(img) | |
text += txt + "\n" | |
for img in page.images: | |
try: | |
x0, y0, x1, y1 = img["x0"], img["y0"], img["x1"], img["y1"] | |
pil = page.within_bbox((x0, y0, x1, y1)).to_image(resolution=200).original | |
images.append(pil) | |
except Exception: | |
pass | |
return text.strip(), images | |
def build_index(text): | |
splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=80) | |
chunks = splitter.split_text(text) | |
vectors = embed.encode(chunks, show_progress_bar=False, batch_size=64) | |
index = FAISS.from_embeddings(list(zip(chunks, vectors)), embed) | |
return index | |
def summarize(text): | |
if len(text) < 50: | |
return "Document too short to summarize." | |
# pick top 3k chars to stay within model limit | |
truncated = text[:3000] | |
return sum_pipe(truncated, max_length=250, min_length=60, do_sample=False)[0]["summary_text"] | |
def answer(question, index): | |
if index is None: | |
return "Please upload & process a PDF first." | |
docs = index.similarity_search(question, k=4) | |
context = "\n".join([d.page_content for d in docs]) | |
prompt = f"Answer the question using ONLY the context below.\n\nContext:\n{context}\n\nQuestion: {question}" | |
return qa_pipe(prompt, max_length=256, do_sample=False)[0]["generated_text"] | |
############################################################################### | |
# Session init | |
############################################################################### | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "index" not in st.session_state: | |
st.session_state.index = None | |
if "raw_text" not in st.session_state: | |
st.session_state.raw_text = "" | |
if "images" not in st.session_state: | |
st.session_state.images = [] | |
############################################################################### | |
# Sidebar | |
############################################################################### | |
with st.sidebar: | |
st.subheader("📁 Upload PDF") | |
uploaded = st.file_uploader("Choose a file", type="pdf", label_visibility="collapsed") | |
if uploaded and st.button("Process PDF"): | |
with st.spinner("Extracting text & images…"): | |
st.session_state.raw_text, st.session_state.images = extract_pdf(uploaded) | |
st.session_state.index = build_index(st.session_state.raw_text) | |
st.session_state.messages = [] | |
st.toast("PDF ready!") | |
if st.session_state.images: | |
st.subheader("🖼️ Extracted Images") | |
for im in st.session_state.images: | |
st.image(im, use_column_width=True) | |
############################################################################### | |
# Main Tabs | |
############################################################################### | |
tab_chat, tab_sum = st.tabs(["💬 Chat", "📄 Summarize"]) | |
with tab_chat: | |
if st.session_state.index is None: | |
st.info("Upload & process a PDF first using the sidebar.") | |
else: | |
# history | |
for role, msg in st.session_state.messages: | |
css = "user" if role == "user" else "assistant" | |
st.markdown(f'<div class="chat-msg {css}">{msg}</div>', unsafe_allow_html=True) | |
# input | |
if question := st.chat_input("Ask anything about the PDF…"): | |
st.session_state.messages.append(("user", question)) | |
st.markdown(f'<div class="chat-msg user">{question}</div>', unsafe_allow_html=True) | |
with st.spinner("Thinking…"): | |
resp = answer(question, st.session_state.index) | |
st.session_state.messages.append(("assistant", resp)) | |
st.markdown(f'<div class="chat-msg assistant">{resp}</div>', unsafe_allow_html=True) | |
with tab_sum: | |
if not st.session_state.raw_text: | |
st.info("Upload & process a PDF first.") | |
else: | |
if st.button("Generate Summary"): | |
with st.spinner("Summarizing…"): | |
summary = summarize(st.session_state.raw_text) | |
st.subheader("Summary") | |
st.write(summary) |