SmartPDF_Q_A / app.py
aaporosh's picture
Update app.py
11694c7 verified
raw
history blame
6.5 kB
# ------------- app.py -------------
import streamlit as st
from pathlib import Path
from io import BytesIO
import pdfplumber, pytesseract, time, re, logging, os
from PIL import Image
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import numpy as np
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
###############################################################################
# Page layout
###############################################################################
st.set_page_config(page_title="PDF Chat & Summarize", layout="wide")
st.markdown("""
<style>
.block-container { padding-top: 1rem; padding-bottom: 0; }
.stTabs [data-baseweb="tab-list"] { gap: 4px; }
.stTabs [data-baseweb="tab"] { padding: 8px 24px; }
.chat-msg { padding: 0.5rem 1rem; border-radius: 8px; margin: 0.3rem 0; }
.user { background-color: #e3f2fd; margin-left: 20%; }
.assistant { background-color: #f1f3f4; margin-right: 20%; }
</style>
""", unsafe_allow_html=True)
###############################################################################
# Cached heavy objects
###############################################################################
@st.cache_resource(show_spinner=False)
def load_embed():
return SentenceTransformer("all-MiniLM-L6-v2")
@st.cache_resource(show_spinner=False)
def load_qa():
return pipeline("text2text-generation", model="google/flan-t5-large", max_length=512)
@st.cache_resource(show_spinner=False)
def load_sum():
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250)
embed = load_embed()
qa_pipe = load_qa()
sum_pipe = load_sum()
###############################################################################
# Helpers
###############################################################################
def extract_pdf(uploaded_file):
"""Return (plain text, image_list)"""
text = ""
images = []
with pdfplumber.open(BytesIO(uploaded_file.getbuffer())) as pdf:
for page in pdf.pages:
txt = page.extract_text_layout() or page.extract_text()
if not txt:
img = page.to_image(resolution=200).original
txt = pytesseract.image_to_string(img)
text += txt + "\n"
for img in page.images:
try:
x0, y0, x1, y1 = img["x0"], img["y0"], img["x1"], img["y1"]
pil = page.within_bbox((x0, y0, x1, y1)).to_image(resolution=200).original
images.append(pil)
except Exception:
pass
return text.strip(), images
def build_index(text):
splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=80)
chunks = splitter.split_text(text)
vectors = embed.encode(chunks, show_progress_bar=False, batch_size=64)
index = FAISS.from_embeddings(list(zip(chunks, vectors)), embed)
return index
def summarize(text):
if len(text) < 50:
return "Document too short to summarize."
# pick top 3k chars to stay within model limit
truncated = text[:3000]
return sum_pipe(truncated, max_length=250, min_length=60, do_sample=False)[0]["summary_text"]
def answer(question, index):
if index is None:
return "Please upload & process a PDF first."
docs = index.similarity_search(question, k=4)
context = "\n".join([d.page_content for d in docs])
prompt = f"Answer the question using ONLY the context below.\n\nContext:\n{context}\n\nQuestion: {question}"
return qa_pipe(prompt, max_length=256, do_sample=False)[0]["generated_text"]
###############################################################################
# Session init
###############################################################################
if "messages" not in st.session_state:
st.session_state.messages = []
if "index" not in st.session_state:
st.session_state.index = None
if "raw_text" not in st.session_state:
st.session_state.raw_text = ""
if "images" not in st.session_state:
st.session_state.images = []
###############################################################################
# Sidebar
###############################################################################
with st.sidebar:
st.subheader("📁 Upload PDF")
uploaded = st.file_uploader("Choose a file", type="pdf", label_visibility="collapsed")
if uploaded and st.button("Process PDF"):
with st.spinner("Extracting text & images…"):
st.session_state.raw_text, st.session_state.images = extract_pdf(uploaded)
st.session_state.index = build_index(st.session_state.raw_text)
st.session_state.messages = []
st.toast("PDF ready!")
if st.session_state.images:
st.subheader("🖼️ Extracted Images")
for im in st.session_state.images:
st.image(im, use_column_width=True)
###############################################################################
# Main Tabs
###############################################################################
tab_chat, tab_sum = st.tabs(["💬 Chat", "📄 Summarize"])
with tab_chat:
if st.session_state.index is None:
st.info("Upload & process a PDF first using the sidebar.")
else:
# history
for role, msg in st.session_state.messages:
css = "user" if role == "user" else "assistant"
st.markdown(f'<div class="chat-msg {css}">{msg}</div>', unsafe_allow_html=True)
# input
if question := st.chat_input("Ask anything about the PDF…"):
st.session_state.messages.append(("user", question))
st.markdown(f'<div class="chat-msg user">{question}</div>', unsafe_allow_html=True)
with st.spinner("Thinking…"):
resp = answer(question, st.session_state.index)
st.session_state.messages.append(("assistant", resp))
st.markdown(f'<div class="chat-msg assistant">{resp}</div>', unsafe_allow_html=True)
with tab_sum:
if not st.session_state.raw_text:
st.info("Upload & process a PDF first.")
else:
if st.button("Generate Summary"):
with st.spinner("Summarizing…"):
summary = summarize(st.session_state.raw_text)
st.subheader("Summary")
st.write(summary)