Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,30 +2,24 @@ import os
|
|
| 2 |
import torch
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from pydantic import BaseModel
|
| 5 |
-
import story_generator
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import io
|
| 8 |
import base64
|
| 9 |
from PIL import Image
|
| 10 |
-
from huggingface_hub import login
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
| 14 |
-
# β
Set Hugging Face cache directory to /tmp
|
| 15 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 16 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 17 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 18 |
|
| 19 |
-
# β
|
| 20 |
-
|
| 21 |
-
login(token=HF_TOKEN)
|
| 22 |
-
|
| 23 |
-
# β
Load Image Generation Model (Use a fast, public model)
|
| 24 |
-
IMAGE_MODEL = "stabilityai/sdxl-turbo" # Replace with "stabilityai/sdxl-lightning" if needed
|
| 25 |
pipeline = DiffusionPipeline.from_pretrained(
|
| 26 |
IMAGE_MODEL,
|
| 27 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 28 |
-
use_auth_token=HF_TOKEN # Required for private models
|
| 29 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
|
| 31 |
# β
Define the input request format
|
|
|
|
| 2 |
import torch
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from pydantic import BaseModel
|
| 5 |
+
import story_generator
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import io
|
| 8 |
import base64
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
+
# β
Set Hugging Face cache directory to /tmp (Fixes cache write errors)
|
| 14 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 15 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
| 16 |
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
| 17 |
|
| 18 |
+
# β
Load Public Image Generation Model (No Token Needed)
|
| 19 |
+
IMAGE_MODEL = "stabilityai/sdxl-turbo" # Fastest model for public access
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
pipeline = DiffusionPipeline.from_pretrained(
|
| 21 |
IMAGE_MODEL,
|
| 22 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
| 23 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
|
| 25 |
# β
Define the input request format
|