Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,87 @@
|
|
|
|
1 |
import torch
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import
|
5 |
import story_generator
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
CACHE_DIR = "/tmp/huggingface"
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
story_tokenizer = GPT2Tokenizer.from_pretrained(STORY_MODEL_NAME, cache_dir=CACHE_DIR)
|
15 |
-
story_model = GPT2LMHeadModel.from_pretrained(STORY_MODEL_NAME, cache_dir=CACHE_DIR)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
# ------------------------
|
20 |
-
QUESTION_MODEL_NAME = "abdalraheemdmd/question-gene"
|
21 |
-
question_tokenizer = GPT2Tokenizer.from_pretrained(QUESTION_MODEL_NAME, cache_dir=CACHE_DIR)
|
22 |
-
question_model = GPT2LMHeadModel.from_pretrained(QUESTION_MODEL_NAME, cache_dir=CACHE_DIR)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
with torch.no_grad():
|
35 |
-
output = story_model.generate(
|
36 |
-
input_ids,
|
37 |
-
max_new_tokens=max_new_tokens,
|
38 |
-
temperature=temperature,
|
39 |
-
top_k=20,
|
40 |
-
top_p=0.7,
|
41 |
-
do_sample=True,
|
42 |
-
early_stopping=True,
|
43 |
-
pad_token_id=story_tokenizer.pad_token_id,
|
44 |
-
eos_token_id=story_tokenizer.eos_token_id,
|
45 |
-
attention_mask=input_ids.ne(story_tokenizer.pad_token_id)
|
46 |
-
)
|
47 |
-
return story_tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
containing keywords like "learn" or "lesson". Returns the last matching sentence.
|
96 |
-
"""
|
97 |
-
sentences = re.split(r'\.|\n', story)
|
98 |
-
lesson_sentences = [
|
99 |
-
s.strip() for s in sentences
|
100 |
-
if ("learn" in s.lower() or "lesson" in s.lower()) and len(s.strip()) > 20
|
101 |
-
]
|
102 |
-
if lesson_sentences:
|
103 |
-
return lesson_sentences[-1]
|
104 |
-
else:
|
105 |
-
return "No explicit lesson found."
|
106 |
-
|
107 |
-
def format_question(question_prompt, correct_answer, distractors):
|
108 |
-
"""
|
109 |
-
Combines the correct answer with three distractors, shuffles the options,
|
110 |
-
and formats the question as a multiple-choice question.
|
111 |
-
"""
|
112 |
-
# Ensure exactly 3 distractors are available
|
113 |
-
if len(distractors) < 3:
|
114 |
-
default_distractors = ["Option X", "Option Y", "Option Z"]
|
115 |
-
while len(distractors) < 3:
|
116 |
-
distractors.append(default_distractors[len(distractors) % len(default_distractors)])
|
117 |
-
else:
|
118 |
-
distractors = random.sample(distractors, 3)
|
119 |
-
options = distractors + [correct_answer]
|
120 |
-
random.shuffle(options)
|
121 |
-
letters = ["A", "B", "C", "D"]
|
122 |
-
correct_letter = letters[options.index(correct_answer)]
|
123 |
-
options_text = "\n".join(f"{letters[i]}) {option}" for i, option in enumerate(options))
|
124 |
-
question_text = f"{question_prompt}\n{options_text}\nCorrect Answer: {correct_letter}"
|
125 |
-
return question_text
|
126 |
-
|
127 |
-
def dynamic_fallback_questions(story):
|
128 |
-
"""
|
129 |
-
Generates three multiple-choice questions based on dynamic story content.
|
130 |
-
Each question uses a randomly chosen template and shuffles its options.
|
131 |
-
"""
|
132 |
-
protagonist = extract_protagonist(story)
|
133 |
-
characters = extract_characters(story)
|
134 |
-
themes = extract_themes(story)
|
135 |
-
lesson = extract_lesson(story)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
"Which theme best represents the narrative?",
|
141 |
-
"What subject is central to the story?"
|
142 |
-
]
|
143 |
-
q1_prompt = random.choice(theme_templates)
|
144 |
-
correct_theme = " and ".join(themes) if themes else "learning"
|
145 |
-
q1_distractors = ["sports and competition", "cooking and baking", "weather and seasons", "technology and innovation"]
|
146 |
-
q1 = format_question(q1_prompt, correct_theme, q1_distractors)
|
147 |
-
|
148 |
-
# --- Question 2: Primary Character ---
|
149 |
-
character_templates = [
|
150 |
-
"Who is the primary character in the story?",
|
151 |
-
"Which character drives the main action in the narrative?",
|
152 |
-
"Who is the central figure in the story?"
|
153 |
-
]
|
154 |
-
q2_prompt = random.choice(character_templates)
|
155 |
-
if protagonist:
|
156 |
-
correct_character = protagonist
|
157 |
-
elif characters:
|
158 |
-
correct_character = characters[0]
|
159 |
-
else:
|
160 |
-
correct_character = "The main character"
|
161 |
-
q2_distractors = ["a mysterious stranger", "an unknown visitor", "a supporting character", "a sidekick"]
|
162 |
-
q2 = format_question(q2_prompt, correct_character, q2_distractors)
|
163 |
-
|
164 |
-
# --- Question 3: Lesson/Moral ---
|
165 |
-
lesson_templates = [
|
166 |
-
"What lesson did the characters learn by the end of the story?",
|
167 |
-
"What moral can be inferred from the narrative?",
|
168 |
-
"What is the key takeaway from the story?"
|
169 |
-
]
|
170 |
-
q3_prompt = random.choice(lesson_templates)
|
171 |
-
if lesson and lesson != "No explicit lesson found.":
|
172 |
-
correct_lesson = lesson # full sentence without truncation
|
173 |
-
else:
|
174 |
-
correct_lesson = "understanding and growth"
|
175 |
-
q3_distractors = ["always be silent", "never try new things", "do nothing", "ignore opportunities"]
|
176 |
-
q3 = format_question(q3_prompt, correct_lesson, q3_distractors)
|
177 |
-
|
178 |
-
return f"{q1}\n\n{q2}\n\n{q3}"
|
179 |
-
|
180 |
-
def generate_story_and_questions(theme, reading_level):
|
181 |
-
"""
|
182 |
-
Generates a story using the story generation model and then creates dynamic,
|
183 |
-
multiple-choice questions based on that story.
|
184 |
-
"""
|
185 |
-
story = generate_story(theme, reading_level)
|
186 |
-
questions = dynamic_fallback_questions(story)
|
187 |
-
return {"story": story, "questions": questions}
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
from fastapi import FastAPI, HTTPException
|
4 |
+
from fastapi.responses import JSONResponse
|
5 |
+
from pydantic import BaseModel
|
6 |
import story_generator
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from PIL import Image
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
|
12 |
+
app = FastAPI()
|
|
|
13 |
|
14 |
+
# Set Hugging Face cache directories
|
15 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
16 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
17 |
+
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface"
|
|
|
|
|
18 |
|
19 |
+
# Enable GPU if available
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Load image generation model
|
23 |
+
IMAGE_MODEL = "lykon/dreamshaper-8"
|
24 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
25 |
+
IMAGE_MODEL,
|
26 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
27 |
+
).to(device)
|
28 |
|
29 |
+
# Define request schema
|
30 |
+
class StoryRequest(BaseModel):
|
31 |
+
theme: str
|
32 |
+
reading_level: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
@app.post("/generate_story_questions_images")
|
35 |
+
def generate_story_questions_images(request: StoryRequest):
|
36 |
+
"""Generates a story, dynamic questions, and cartoonish storybook images."""
|
37 |
+
try:
|
38 |
+
print(f"π Generating story for theme: {request.theme} and level: {request.reading_level}")
|
39 |
+
|
40 |
+
# Generate story and questions
|
41 |
+
story_result = story_generator.generate_story_and_questions(request.theme, request.reading_level)
|
42 |
+
story_text = story_result.get("story", "").strip()
|
43 |
+
questions = story_result.get("questions", "").strip()
|
44 |
+
|
45 |
+
if not story_text:
|
46 |
+
raise HTTPException(status_code=500, detail="Story generation failed.")
|
47 |
+
|
48 |
+
# Split the story into up to 6 paragraphs
|
49 |
+
paragraphs = [p.strip() for p in story_text.split("\n") if p.strip()][:6]
|
50 |
+
|
51 |
+
# Batch image generation:
|
52 |
+
prompts = [
|
53 |
+
(
|
54 |
+
f"Children's storybook illustration of: {p}. "
|
55 |
+
"Soft pastel colors, hand-drawn style, friendly characters, warm lighting, "
|
56 |
+
"fantasy setting, watercolor texture, storybook illustration, beautiful composition."
|
57 |
+
)
|
58 |
+
for p in paragraphs
|
59 |
+
]
|
60 |
+
print(f"Generating images for {len(prompts)} paragraphs concurrently...")
|
61 |
+
|
62 |
+
# Single batched call to generate images concurrently
|
63 |
+
results = pipeline(prompt=prompts, num_inference_steps=15, height=768, width=768).images
|
64 |
+
|
65 |
+
images = []
|
66 |
+
for image in results:
|
67 |
+
img_byte_arr = io.BytesIO()
|
68 |
+
image.save(img_byte_arr, format="PNG")
|
69 |
+
img_byte_arr.seek(0)
|
70 |
+
base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
71 |
+
images.append(base64_image)
|
72 |
+
|
73 |
+
return JSONResponse(content={
|
74 |
+
"theme": request.theme,
|
75 |
+
"reading_level": request.reading_level,
|
76 |
+
"story": story_text,
|
77 |
+
"questions": questions,
|
78 |
+
"images": images
|
79 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
except Exception as e:
|
82 |
+
print(f"β Error generating story/questions/images: {e}")
|
83 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
@app.get("/")
|
86 |
+
def home():
|
87 |
+
return {"message": "π Welcome to the Story, Question & Image API!"}
|