Upload 2 files
Browse files- requirements.txt +4 -3
- yahoo.py +60 -0
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
streamlit
|
|
|
|
1 |
+
plotly==6.0.0
|
2 |
+
prophet==1.1.6
|
3 |
+
streamlit==1.42.0
|
4 |
+
yfinance==0.2.55
|
yahoo.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datetime import date
|
3 |
+
import yfinance as yf
|
4 |
+
from prophet import Prophet
|
5 |
+
from prophet.plot import plot_plotly
|
6 |
+
from plotly import graph_objs as go
|
7 |
+
|
8 |
+
START = "2015-01-01"
|
9 |
+
TODAY = date.today().strftime("%Y-%m-%d")
|
10 |
+
st.title("Stock Price Prediction App")
|
11 |
+
|
12 |
+
stocks = ("AAPL", "GOOG", "MSFT", "AMZN")
|
13 |
+
selected_stock = st.selectbox("Select stock for prediction", stocks)
|
14 |
+
n_years = st.slider("Years of prediction", 1, 4)
|
15 |
+
period = n_years * 365
|
16 |
+
|
17 |
+
@st.cache_data
|
18 |
+
def load_data(ticker):
|
19 |
+
data = yf.download(ticker, START, TODAY)
|
20 |
+
data.reset_index(inplace=True)
|
21 |
+
return data
|
22 |
+
|
23 |
+
data_load_state = st.text("Loading data...")
|
24 |
+
data = load_data(selected_stock)
|
25 |
+
data_load_state.text("Loading data...done!")
|
26 |
+
st.subheader("Raw data")
|
27 |
+
data.columns = data.columns.droplevel(1)
|
28 |
+
st.write(data.tail())
|
29 |
+
|
30 |
+
#PLOT Raw Data
|
31 |
+
def plot_raw_data():
|
32 |
+
fig = go.Figure()
|
33 |
+
fig.add_trace(go.Scatter(x=data["Date"], y=data["Open"],
|
34 |
+
name="Stock Open"))
|
35 |
+
fig.add_trace(go.Scatter(x=data["Date"], y=data["Close"],
|
36 |
+
name="Stock Close"))
|
37 |
+
fig.layout.update(title_text="Time Series Data",
|
38 |
+
xaxis_rangeslider_visible=True)
|
39 |
+
st.plotly_chart(fig)
|
40 |
+
plot_raw_data()
|
41 |
+
|
42 |
+
#PREDICTION AVEC PROPHET
|
43 |
+
df_train = data[["Date", "Close"]]
|
44 |
+
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
|
45 |
+
m = Prophet()
|
46 |
+
m.fit(df_train)
|
47 |
+
future = m.make_future_dataframe(periods=period)
|
48 |
+
forecast = m.predict(future)
|
49 |
+
#Show and plot forecast
|
50 |
+
st.subheader("Forecast data")
|
51 |
+
st.write(forecast.tail())
|
52 |
+
st.write(f"Forecast plot for {n_years} years")
|
53 |
+
fig1 = plot_plotly(m, forecast)
|
54 |
+
st.plotly_chart(fig1)
|
55 |
+
|
56 |
+
st.write("Forecast components")
|
57 |
+
fig2 = m.plot_components(forecast)
|
58 |
+
st.write(fig2)
|
59 |
+
|
60 |
+
|