import streamlit as st from datetime import date import yfinance as yf from prophet import Prophet from prophet.plot import plot_plotly from plotly import graph_objs as go START = "2015-01-01" TODAY = date.today().strftime("%Y-%m-%d") st.title("Stock Price Prediction App") stocks = ("AAPL", "GOOG", "MSFT", "AMZN") selected_stock = st.selectbox("Select stock for prediction", stocks) n_years = st.slider("Years of prediction", 1, 4) period = n_years * 365 @st.cache_data def load_data(ticker): data = yf.download(ticker, START, TODAY) data.reset_index(inplace=True) return data data_load_state = st.text("Loading data...") data = load_data(selected_stock) data_load_state.text("Loading data...done!") st.subheader("Raw data") data.columns = data.columns.droplevel(1) st.write(data.tail()) #PLOT Raw Data def plot_raw_data(): fig = go.Figure() fig.add_trace(go.Scatter(x=data["Date"], y=data["Open"], name="Stock Open")) fig.add_trace(go.Scatter(x=data["Date"], y=data["Close"], name="Stock Close")) fig.layout.update(title_text="Time Series Data", xaxis_rangeslider_visible=True) st.plotly_chart(fig) plot_raw_data() #PREDICTION AVEC PROPHET df_train = data[["Date", "Close"]] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) #Show and plot forecast st.subheader("Forecast data") st.write(forecast.tail()) st.write(f"Forecast plot for {n_years} years") fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write("Forecast components") fig2 = m.plot_components(forecast) st.write(fig2)