File size: 16,756 Bytes
f81cfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
import gradio as gr
import requests
import re
import time
import pandas as pd
from typing import Dict, Tuple, List, Optional
# Configuration
API_URL = "http://localhost:5685/punctuate"
punc_dict = {
'!': 'EXCLAMATION',
'?': 'QUESTION',
',': 'COMMA',
';': 'SEMICOLON',
':': 'COLON',
'-': 'HYPHEN',
'।': 'DARI',
}
allowed_punctuations = set(punc_dict.keys())
def clean_and_normalize_text(text, remove_punctuations=False):
"""Clean and normalize Bangla text with correct spacing"""
if remove_punctuations:
# Remove all allowed punctuations
cleaned_text = re.sub(f"[{re.escape(''.join(allowed_punctuations))}]", "", text)
# Normalize spaces
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
else:
# Keep only allowed punctuations and Bangla letters/digits
chunks = re.split(f"([{re.escape(''.join(allowed_punctuations))}])", text)
filtered_chunks = []
for chunk in chunks:
if chunk in allowed_punctuations:
filtered_chunks.append(chunk)
else:
# Clean text and preserve word boundaries
clean_chunk = re.sub(rf"[^\u0980-\u09FF\u09E6-\u09EF\s]", "", chunk)
clean_chunk = re.sub(r'\s+', ' ', clean_chunk) # Normalize internal spacing
clean_chunk = clean_chunk.strip()
if clean_chunk:
filtered_chunks.append(' ' + clean_chunk) # Add space before word chunks
# Join and clean up spacing
result = ''.join(filtered_chunks)
result = re.sub(r'\s+', ' ', result).strip()
return result
def restore_punctuation(text):
"""Call the punctuation restoration API"""
try:
payload = {"text": text}
start_time = time.time()
response = requests.post(API_URL, json=payload)
end_time = time.time()
api_time = end_time - start_time
if response.status_code == 200:
restored_text = response.json().get("restored_text")
return restored_text, api_time
else:
return f"API Error: {response.status_code} - {response.text}", api_time
except Exception as e:
return f"Connection Error: {str(e)}", 0.0
def dummy_restore_punctuation(text):
"""Dummy API call for demonstration when real API is not available"""
time.sleep(0.5) # Simulate API delay
# Simple dummy logic - add some punctuations randomly for demo
words = text.split()
if len(words) > 5:
words[2] = words[2] + ','
words[-1] = words[-1] + '?'
elif len(words) > 2:
words[-1] = words[-1] + '!'
return ' '.join(words), 0.5
def tokenize_with_punctuation(text):
"""Tokenize text keeping punctuation separate using chunk-based approach"""
tokens = []
chunks = re.split(f"([{re.escape(''.join(allowed_punctuations))}])", text)
for chunk in chunks:
if not chunk.strip():
continue
if chunk in allowed_punctuations:
# This is a punctuation
tokens.append(chunk)
else:
# This is text, split into words
words = chunk.strip().split()
for word in words:
if word.strip():
tokens.append(word.strip())
return tokens
def compare_texts(ground_truth, predicted):
"""Compare ground truth and predicted text token by token with proper alignment"""
gt_tokens = tokenize_with_punctuation(ground_truth)
pred_tokens = tokenize_with_punctuation(predicted)
comparison_result = []
correct_puncs = {}
wrong_puncs = {}
gt_punc_counts = {}
# Count punctuations in ground truth
for token in gt_tokens:
if token in allowed_punctuations:
punc_name = punc_dict[token]
gt_punc_counts[punc_name] = gt_punc_counts.get(punc_name, 0) + 1
# Separate words and punctuations for better alignment
gt_words = [token for token in gt_tokens if token not in allowed_punctuations]
pred_words = [token for token in pred_tokens if token not in allowed_punctuations]
# Create position maps for punctuations
gt_punct_map = {} # word_index -> [punctuations after this word]
pred_punct_map = {} # word_index -> [punctuations after this word]
# Build ground truth punctuation map
word_idx = -1
for i, token in enumerate(gt_tokens):
if token not in allowed_punctuations:
word_idx += 1
else:
if word_idx not in gt_punct_map:
gt_punct_map[word_idx] = []
gt_punct_map[word_idx].append(token)
# Build predicted punctuation map
word_idx = -1
for i, token in enumerate(pred_tokens):
if token not in allowed_punctuations:
word_idx += 1
else:
if word_idx not in pred_punct_map:
pred_punct_map[word_idx] = []
pred_punct_map[word_idx].append(token)
# Compare words and punctuations
max_words = max(len(gt_words), len(pred_words))
for i in range(max_words):
# Add word
if i < len(gt_words) and i < len(pred_words):
if gt_words[i] == pred_words[i]:
comparison_result.append((gt_words[i], "correct", "black"))
else:
comparison_result.append((f"{gt_words[i]}→{pred_words[i]}", "word_diff", "orange"))
elif i < len(gt_words):
comparison_result.append((f"{gt_words[i]}→''", "missing_word", "red"))
elif i < len(pred_words):
comparison_result.append((f"''→{pred_words[i]}", "extra_word", "red"))
# Compare punctuations after this word
gt_puncs = gt_punct_map.get(i, [])
pred_puncs = pred_punct_map.get(i, [])
# Handle punctuation comparison
max_puncs = max(len(gt_puncs), len(pred_puncs))
for j in range(max_puncs):
if j < len(gt_puncs) and j < len(pred_puncs):
gt_punc = gt_puncs[j]
pred_punc = pred_puncs[j]
if gt_punc == pred_punc:
punc_name = punc_dict[gt_punc]
correct_puncs[punc_name] = correct_puncs.get(punc_name, 0) + 1
comparison_result.append((gt_punc, "correct", "green"))
else:
# Wrong punctuation
punc_name = punc_dict[gt_punc]
wrong_puncs[punc_name] = wrong_puncs.get(punc_name, 0) + 1
comparison_result.append((f"{gt_punc}→{pred_punc}", "wrong_punct", "red"))
elif j < len(gt_puncs):
# Missing punctuation
gt_punc = gt_puncs[j]
punc_name = punc_dict[gt_punc]
wrong_puncs[punc_name] = wrong_puncs.get(punc_name, 0) + 1
comparison_result.append((f"{gt_punc}→''", "missing_punct", "red"))
elif j < len(pred_puncs):
# Extra punctuation (not counted in wrong_puncs since it's not in GT)
pred_punc = pred_puncs[j]
comparison_result.append((f"''→{pred_punc}", "extra_punct", "red"))
return comparison_result, correct_puncs, wrong_puncs, gt_punc_counts
def create_evaluation_table(correct_puncs, wrong_puncs, gt_punc_counts):
"""Create evaluation table"""
table_data = []
for punc_name in gt_punc_counts.keys():
correct_count = correct_puncs.get(punc_name, 0)
wrong_count = wrong_puncs.get(punc_name, 0)
total_count = gt_punc_counts[punc_name]
table_data.append([
punc_name,
correct_count,
wrong_count,
total_count
])
df = pd.DataFrame(table_data, columns=[
"Punctuation Name",
"Correctly Classified",
"Wrongly Classified",
"Count in Ground Truth"
])
return df
def format_comparison_html(comparison_result):
"""Format comparison result as HTML with improved display"""
html = "<div style='font-family: monospace; font-size: 16px; line-height: 1.8; padding: 20px; border: 1px solid #ddd; border-radius: 5px;'>"
for token, status, color in comparison_result:
if status == "correct" and color == "green":
# Correct punctuation
html += f"<span style='background-color: #d4edda; color: #155724; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{token}</span>"
elif color == "red":
# Incorrect, missing, or extra punctuation/word
if "→''" in token:
# Missing punctuation or word
missing_item = token.split("→")[0]
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{missing_item}→∅</span>"
elif "''→" in token:
# Extra punctuation or word
extra_item = token.split("→")[1]
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>∅→{extra_item}</span>"
else:
# Wrong punctuation/word
html += f"<span style='background-color: #f8d7da; color: #721c24; padding: 2px 4px; margin: 1px; border-radius: 3px; font-weight: bold;'>{token}</span>"
elif color == "orange":
# Word difference
html += f"<span style='background-color: #fff3cd; color: #856404; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token}</span>"
else:
# Correct word
html += f"<span style='padding: 2px 4px; margin: 1px;'>{token}</span>"
# Add space after each token
html += " "
html += "</div>"
# Add legend
html += """
<div style='margin-top: 15px; padding: 10px; background-color: #f8f9fa; border-radius: 5px; font-size: 14px;'>
<strong>Legend:</strong><br>
<span style='background-color: #d4edda; color: #155724; padding: 1px 3px; border-radius: 2px; margin: 2px;'>✓</span> Correct punctuation
<span style='background-color: #f8d7da; color: #721c24; padding: 1px 3px; border-radius: 2px; margin: 2px;'>✗</span> Wrong/Missing/Extra punctuation
<span style='background-color: #fff3cd; color: #856404; padding: 1px 3px; border-radius: 2px; margin: 2px;'>~</span> Word difference
<span style='padding: 1px 3px; margin: 2px;'>◦</span> Correct word<br>
<strong>∅</strong> = Empty/Missing
</div>
"""
return html
def process_punctuation_restoration(input_text, ground_truth=""):
"""Main processing function"""
if not input_text.strip():
return "Please enter input text", "", "", None, ""
# Make API call (using dummy for demonstration)
try:
# Try real API first
predicted_text, api_time = restore_punctuation(input_text)
if "Error" in str(predicted_text):
# Fall back to dummy API
# predicted_text, api_time = dummy_restore_punctuation(input_text)
predicted_text, api_time = f"Error : {input_text}", 999999
except:
# Fall back to dummy API
# predicted_text, api_time = dummy_restore_punctuation(input_text)
predicted_text, api_time = f"Error : {input_text}", 999999
time_info = f"API call completed in {api_time:.3f} seconds"
predicted_text = predicted_text[0] if isinstance(predicted_text, list) else predicted_text
print(f"input_text: {input_text}", flush=True)
print(f"predicted_text: {predicted_text}", flush=True)
if not ground_truth.strip():
return predicted_text, "", time_info, None, ""
# Normalize ground truth
ground_truth_normalized = clean_and_normalize_text(ground_truth)
# Compare texts
comparison_result, correct_puncs, wrong_puncs, gt_punc_counts = compare_texts(
ground_truth_normalized, predicted_text
)
# Create comparison HTML
comparison_html = format_comparison_html(comparison_result)
# Create evaluation table
eval_table = create_evaluation_table(correct_puncs, wrong_puncs, gt_punc_counts)
return predicted_text, comparison_html, time_info, eval_table, f"Normalized Ground Truth: {ground_truth_normalized}"
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Punctuation Restoration Evaluator", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🔤 Punctuation Restoration Evaluator")
gr.Markdown("Enter text to restore punctuation. Optionally provide ground truth for evaluation.")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
label="Input Text (without punctuation)",
placeholder="পুরুষের সংখ্যা মোট জনসংখ্যার ৫২ এবং নারীর সংখ্যা ৪৮ শহরের সাক্ষরতার হার কত",
lines=4
)
ground_truth = gr.Textbox(
label="Ground Truth (optional)",
placeholder="পুরুষের সংখ্যা মোট জনসংখ্যার ৫২, এবং নারীর সংখ্যা ৪৮। শহরের সাক্ষরতার হার কত?",
lines=4
)
submit_btn = gr.Button("🚀 Restore Punctuation", variant="primary")
with gr.Column(scale=2):
api_time = gr.Textbox(label="⏱️ API Response Time", interactive=False)
predicted_output = gr.Textbox(
label="📝 Predicted Output",
lines=3,
interactive=False
)
normalized_gt = gr.Textbox(
label="📋 Normalized Ground Truth",
lines=2,
interactive=False
)
comparison_output = gr.HTML(
label="🔍 Token-wise Comparison",
value="<p>Comparison will appear here after processing with ground truth.</p>"
)
evaluation_table = gr.Dataframe(
label="📊 Punctuation Evaluation Metrics",
headers=["Punctuation Name", "Correctly Classified", "Wrongly Classified", "Count in Ground Truth"],
interactive=False
)
# Legend
gr.Markdown("""
### 🎨 Color Legend:
- 🟢 **Green**: Correctly predicted punctuation
- 🔴 **Red**: Incorrectly predicted, missing, or extra punctuation/word
- 🟡 **Orange**: Word-level differences
- ⚫ **Black**: Correct words/tokens
- **∅**: Empty/Missing (instead of showing word→word or punct→word)
""")
submit_btn.click(
fn=process_punctuation_restoration,
inputs=[input_text, ground_truth],
outputs=[predicted_output, comparison_output, api_time, evaluation_table, normalized_gt]
)
# Example section
gr.Markdown("### 📚 Example")
gr.Examples(
examples=[
[
"পুরুষের সংখ্যা মোট জনসংখ্যার ৫২ এবং নারীর সংখ্যা ৪৮ শহরের সাক্ষরতার হার কত",
"পুরুষের সংখ্যা মোট জনসংখ্যার ৫২, এবং নারীর সংখ্যা ৪৮। শহরের সাক্ষরতার হার কত?"
],
[
"ক্রিকেট বিশ্বের কাছে নিজের আগামীবার তা ভালোভাবেই পৌঁছে দিলেন পাকিস্তানের পেসার আমের জামান",
""
]
],
inputs=[input_text, ground_truth]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |