ABDULLAH BILAL
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,59 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# β
Sentiment Analysis
|
5 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
6 |
+
|
7 |
+
def analyze_sentiment(text):
|
8 |
+
result = sentiment_pipeline(text)[0]
|
9 |
+
return f"{result['label']} ({result['score']:.2f})"
|
10 |
+
|
11 |
+
# β
Toxic Comment Detection (uses a toxicity model from Hugging Face)
|
12 |
+
toxic_pipeline = pipeline("text-classification", model="unitary/toxic-bert")
|
13 |
+
|
14 |
+
def detect_toxic(text):
|
15 |
+
result = toxic_pipeline(text)[0]
|
16 |
+
return f"{result['label']} ({result['score']:.2f})"
|
17 |
+
|
18 |
+
# β
Image Captioning Model (BLIP)
|
19 |
+
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
20 |
+
|
21 |
+
def caption_image(image):
|
22 |
+
result = image_captioner(image)[0]['generated_text']
|
23 |
+
return result
|
24 |
+
|
25 |
+
# β
Speech-to-Text Model (whisper)
|
26 |
+
speech_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
27 |
+
|
28 |
+
def speech_to_text(audio):
|
29 |
+
result = speech_pipeline(audio)
|
30 |
+
return result['text']
|
31 |
+
|
32 |
+
# π‘ Placeholder for Style Transfer (optional upgrade later)
|
33 |
+
def style_transfer(image, style):
|
34 |
+
return image # Replace with real model later
|
35 |
+
|
36 |
+
# β
Gradio App Setup
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("# π ML Playground Dashboard")
|
39 |
+
|
40 |
+
with gr.Tab("Sentiment Analyzer"):
|
41 |
+
gr.Interface(fn=analyze_sentiment, inputs=gr.Textbox(), outputs=gr.Textbox())
|
42 |
+
|
43 |
+
with gr.Tab("Toxic Comment Detector"):
|
44 |
+
gr.Interface(fn=detect_toxic, inputs=gr.Textbox(), outputs=gr.Textbox())
|
45 |
+
|
46 |
+
with gr.Tab("Image Caption Generator"):
|
47 |
+
gr.Interface(fn=caption_image, inputs=gr.Image(type="pil"), outputs=gr.Textbox())
|
48 |
+
|
49 |
+
with gr.Tab("Speech-to-Text"):
|
50 |
+
gr.Interface(fn=speech_to_text, inputs=gr.Audio(type="filepath"), outputs=gr.Textbox())
|
51 |
+
|
52 |
+
with gr.Tab("Art Style Transfer"):
|
53 |
+
gr.Interface(
|
54 |
+
fn=style_transfer,
|
55 |
+
inputs=[gr.Image(), gr.Dropdown(["Van Gogh", "Monet", "Picasso"])],
|
56 |
+
outputs=gr.Image()
|
57 |
+
)
|
58 |
+
|
59 |
+
demo.launch()
|