Spaces:
Sleeping
Sleeping
abdullahzahid77
commited on
Upload code.ipynb
Browse files- code.ipynb +1742 -0
code.ipynb
ADDED
@@ -0,0 +1,1742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"source": [
|
6 |
+
"# !pip install torch\n",
|
7 |
+
"# !pip install pandas\n",
|
8 |
+
"!pip install datasets\n",
|
9 |
+
"# !pip install scikit-learn==1.3.0 # Install scikit-learn for metrics calculation\n"
|
10 |
+
],
|
11 |
+
"metadata": {
|
12 |
+
"colab": {
|
13 |
+
"base_uri": "https://localhost:8080/"
|
14 |
+
},
|
15 |
+
"id": "S5L56kdMJSyW",
|
16 |
+
"outputId": "c0aad11f-5182-428a-9ad5-d482c9f552f7"
|
17 |
+
},
|
18 |
+
"execution_count": 6,
|
19 |
+
"outputs": [
|
20 |
+
{
|
21 |
+
"output_type": "stream",
|
22 |
+
"name": "stdout",
|
23 |
+
"text": [
|
24 |
+
"Collecting datasets\n",
|
25 |
+
" Downloading datasets-3.2.0-py3-none-any.whl.metadata (20 kB)\n",
|
26 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.16.1)\n",
|
27 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.26.4)\n",
|
28 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (17.0.0)\n",
|
29 |
+
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
|
30 |
+
" Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
|
31 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.2.2)\n",
|
32 |
+
"Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.32.3)\n",
|
33 |
+
"Requirement already satisfied: tqdm>=4.66.3 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.67.1)\n",
|
34 |
+
"Collecting xxhash (from datasets)\n",
|
35 |
+
" Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n",
|
36 |
+
"Collecting multiprocess<0.70.17 (from datasets)\n",
|
37 |
+
" Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n",
|
38 |
+
"Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets)\n",
|
39 |
+
" Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n",
|
40 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.11.11)\n",
|
41 |
+
"Requirement already satisfied: huggingface-hub>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.27.1)\n",
|
42 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.2)\n",
|
43 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.2)\n",
|
44 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (2.4.4)\n",
|
45 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.2)\n",
|
46 |
+
"Requirement already satisfied: async-timeout<6.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
|
47 |
+
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (24.3.0)\n",
|
48 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.5.0)\n",
|
49 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.1.0)\n",
|
50 |
+
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (0.2.1)\n",
|
51 |
+
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.18.3)\n",
|
52 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.23.0->datasets) (4.12.2)\n",
|
53 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.4.1)\n",
|
54 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (3.10)\n",
|
55 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2.3.0)\n",
|
56 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets) (2024.12.14)\n",
|
57 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
|
58 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
|
59 |
+
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.2)\n",
|
60 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.17.0)\n",
|
61 |
+
"Downloading datasets-3.2.0-py3-none-any.whl (480 kB)\n",
|
62 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
63 |
+
"\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
|
64 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
65 |
+
"\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n",
|
66 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
+
"\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
|
68 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
+
"\u001b[?25hDownloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
|
70 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
71 |
+
"\u001b[?25hInstalling collected packages: xxhash, fsspec, dill, multiprocess, datasets\n",
|
72 |
+
" Attempting uninstall: fsspec\n",
|
73 |
+
" Found existing installation: fsspec 2024.10.0\n",
|
74 |
+
" Uninstalling fsspec-2024.10.0:\n",
|
75 |
+
" Successfully uninstalled fsspec-2024.10.0\n",
|
76 |
+
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
77 |
+
"gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
78 |
+
"\u001b[0mSuccessfully installed datasets-3.2.0 dill-0.3.8 fsspec-2024.9.0 multiprocess-0.70.16 xxhash-3.5.0\n"
|
79 |
+
]
|
80 |
+
}
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 7,
|
86 |
+
"metadata": {
|
87 |
+
"id": "8DBKKDMsIYmE"
|
88 |
+
},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"from transformers import BertTokenizer, BertForSequenceClassification\n",
|
92 |
+
"import pandas as pd\n",
|
93 |
+
"from datasets import Dataset\n",
|
94 |
+
"from datasets import load_dataset\n",
|
95 |
+
"from torch.utils.data import DataLoader\n",
|
96 |
+
"from transformers import DataCollatorWithPadding\n",
|
97 |
+
"from transformers import AdamW\n",
|
98 |
+
"from transformers import Trainer, TrainingArguments\n",
|
99 |
+
"\n",
|
100 |
+
"\n",
|
101 |
+
"\n"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"source": [
|
106 |
+
"import numpy as np\n",
|
107 |
+
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n",
|
108 |
+
"\n",
|
109 |
+
"def compute_metrics(pred):\n",
|
110 |
+
" \"\"\"\n",
|
111 |
+
" Computes and returns a dictionary of metrics (accuracy, precision, recall, F1-score).\n",
|
112 |
+
" \"\"\"\n",
|
113 |
+
" labels = pred.label_ids\n",
|
114 |
+
" preds = pred.predictions.argmax(axis=1)\n",
|
115 |
+
"\n",
|
116 |
+
" accuracy = accuracy_score(labels, preds)\n",
|
117 |
+
" precision = precision_score(labels, preds)\n",
|
118 |
+
" recall = recall_score(labels, preds)\n",
|
119 |
+
" f1 = f1_score(labels, preds)\n",
|
120 |
+
"\n",
|
121 |
+
" return {\"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}"
|
122 |
+
],
|
123 |
+
"cell_type": "code",
|
124 |
+
"metadata": {
|
125 |
+
"id": "xAMF75YVSJFo"
|
126 |
+
},
|
127 |
+
"execution_count": null,
|
128 |
+
"outputs": []
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"source": [
|
133 |
+
"from google.colab import drive\n",
|
134 |
+
"drive.mount('/content/drive')"
|
135 |
+
],
|
136 |
+
"metadata": {
|
137 |
+
"colab": {
|
138 |
+
"base_uri": "https://localhost:8080/"
|
139 |
+
},
|
140 |
+
"id": "becVBilbJLXc",
|
141 |
+
"outputId": "c720c029-c497-4792-98f4-88284fe41045"
|
142 |
+
},
|
143 |
+
"execution_count": 1,
|
144 |
+
"outputs": [
|
145 |
+
{
|
146 |
+
"output_type": "stream",
|
147 |
+
"name": "stdout",
|
148 |
+
"text": [
|
149 |
+
"Mounted at /content/drive\n"
|
150 |
+
]
|
151 |
+
}
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": null,
|
157 |
+
"metadata": {
|
158 |
+
"id": "SBk5ob4wIYmJ"
|
159 |
+
},
|
160 |
+
"outputs": [],
|
161 |
+
"source": [
|
162 |
+
"# Load the dataset from the specified CSV file\n",
|
163 |
+
"raw_datasets = pd.read_csv(\"/content/drive/MyDrive/nlp/clickbait_data.csv\")\n"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"metadata": {
|
170 |
+
"colab": {
|
171 |
+
"base_uri": "https://localhost:8080/"
|
172 |
+
},
|
173 |
+
"id": "PL7q5PKFIYmK",
|
174 |
+
"outputId": "d8953fc0-f80c-4ce1-aaea-adde68eef8e0"
|
175 |
+
},
|
176 |
+
"outputs": [
|
177 |
+
{
|
178 |
+
"output_type": "stream",
|
179 |
+
"name": "stdout",
|
180 |
+
"text": [
|
181 |
+
" headline clickbait\n",
|
182 |
+
"0 Should I Get Bings 1\n",
|
183 |
+
"1 Which TV Female Friend Group Do You Belong In 1\n",
|
184 |
+
"2 The New \"Star Wars: The Force Awakens\" Trailer... 1\n",
|
185 |
+
"3 This Vine Of New York On \"Celebrity Big Brothe... 1\n",
|
186 |
+
"4 A Couple Did A Stunning Photo Shoot With Their... 1\n",
|
187 |
+
"... ... ...\n",
|
188 |
+
"31995 To Make Female Hearts Flutter in Iraq, Throw a... 0\n",
|
189 |
+
"31996 British Liberal Democrat Patsy Calton, 56, die... 0\n",
|
190 |
+
"31997 Drone smartphone app to help heart attack vict... 0\n",
|
191 |
+
"31998 Netanyahu Urges Pope Benedict, in Israel, to D... 0\n",
|
192 |
+
"31999 Computer Makers Prepare to Stake Bigger Claim ... 0\n",
|
193 |
+
"\n",
|
194 |
+
"[32000 rows x 2 columns]\n"
|
195 |
+
]
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"source": [
|
199 |
+
"print(raw_datasets)"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": null,
|
205 |
+
"metadata": {
|
206 |
+
"id": "ucNw7B3lIYmK"
|
207 |
+
},
|
208 |
+
"outputs": [],
|
209 |
+
"source": [
|
210 |
+
"df = pd.DataFrame(raw_datasets, columns=[\"headline\", \"clickbait\"])\n",
|
211 |
+
"\n"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": null,
|
217 |
+
"metadata": {
|
218 |
+
"colab": {
|
219 |
+
"base_uri": "https://localhost:8080/"
|
220 |
+
},
|
221 |
+
"id": "Lev9BlWZIYmK",
|
222 |
+
"outputId": "e16cc1cc-f9ee-4b5c-9ddf-42b59569e4a2"
|
223 |
+
},
|
224 |
+
"outputs": [
|
225 |
+
{
|
226 |
+
"output_type": "stream",
|
227 |
+
"name": "stdout",
|
228 |
+
"text": [
|
229 |
+
" headline clickbait\n",
|
230 |
+
"0 Filipino activist arrested for disrupting Mani... 0\n",
|
231 |
+
"1 International Board fixes soccer field size, h... 0\n",
|
232 |
+
"2 24 Rules For Women On A First Date With A Man 1\n",
|
233 |
+
"3 Political fallout from the sacking of Professo... 0\n",
|
234 |
+
"4 Which \"Clueless\" Character Are You Based On Yo... 1\n",
|
235 |
+
"... ... ...\n",
|
236 |
+
"31995 Rocket strike near hotel in Afghan capital inj... 0\n",
|
237 |
+
"31996 How Well Do You Remember The First Episode Of ... 1\n",
|
238 |
+
"31997 16 Photos From The Delhi Queer Pride Parade Th... 1\n",
|
239 |
+
"31998 33 Of The Most Canadian Sentences Ever 1\n",
|
240 |
+
"31999 Man killed after shop robbery in West Yorkshir... 0\n",
|
241 |
+
"\n",
|
242 |
+
"[32000 rows x 2 columns]\n"
|
243 |
+
]
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"source": [
|
247 |
+
"df = df.sample(frac=1, random_state=42).reset_index(drop=True)\n",
|
248 |
+
"\n",
|
249 |
+
"# Display the first few rows of the shuffled DataFrame\n",
|
250 |
+
"print(df)"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": null,
|
256 |
+
"metadata": {
|
257 |
+
"id": "JGLQrK2oIYmL"
|
258 |
+
},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"# Step 1: Clean text (lowercase, remove special characters, normalize spaces)\n",
|
262 |
+
"df['headline'] = df['headline'].str.lower() # Convert to lowercase\n",
|
263 |
+
"df['headline'] = df['headline'].str.replace(r'[^a-z0-9\\s]', '', regex=True) # Remove special characters\n",
|
264 |
+
"df['headline'] = df['headline'].str.replace(r'\\s+', ' ', regex=True) # Normalize multiple spaces\n",
|
265 |
+
"\n",
|
266 |
+
"# Step 2: Split into DatasetDict format (to be used with Hugging Face's `datasets` library)\n",
|
267 |
+
"# Convert the cleaned dataframe into a Dataset object for easy tokenization with Hugging Face\n"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"metadata": {
|
274 |
+
"colab": {
|
275 |
+
"base_uri": "https://localhost:8080/",
|
276 |
+
"height": 423
|
277 |
+
},
|
278 |
+
"id": "V0PLQ45hIYmL",
|
279 |
+
"outputId": "92045cbe-2f40-4a8a-9141-41b0f3c03a46"
|
280 |
+
},
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"output_type": "execute_result",
|
284 |
+
"data": {
|
285 |
+
"text/plain": [
|
286 |
+
" headline clickbait\n",
|
287 |
+
"0 filipino activist arrested for disrupting mani... 0\n",
|
288 |
+
"1 international board fixes soccer field size ha... 0\n",
|
289 |
+
"2 24 rules for women on a first date with a man 1\n",
|
290 |
+
"3 political fallout from the sacking of professo... 0\n",
|
291 |
+
"4 which clueless character are you based on your... 1\n",
|
292 |
+
"... ... ...\n",
|
293 |
+
"31995 rocket strike near hotel in afghan capital inj... 0\n",
|
294 |
+
"31996 how well do you remember the first episode of ... 1\n",
|
295 |
+
"31997 16 photos from the delhi queer pride parade th... 1\n",
|
296 |
+
"31998 33 of the most canadian sentences ever 1\n",
|
297 |
+
"31999 man killed after shop robbery in west yorkshir... 0\n",
|
298 |
+
"\n",
|
299 |
+
"[32000 rows x 2 columns]"
|
300 |
+
],
|
301 |
+
"text/html": [
|
302 |
+
"\n",
|
303 |
+
" <div id=\"df-d5c6de19-cc3d-4e4a-b949-90707b35d029\" class=\"colab-df-container\">\n",
|
304 |
+
" <div>\n",
|
305 |
+
"<style scoped>\n",
|
306 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
307 |
+
" vertical-align: middle;\n",
|
308 |
+
" }\n",
|
309 |
+
"\n",
|
310 |
+
" .dataframe tbody tr th {\n",
|
311 |
+
" vertical-align: top;\n",
|
312 |
+
" }\n",
|
313 |
+
"\n",
|
314 |
+
" .dataframe thead th {\n",
|
315 |
+
" text-align: right;\n",
|
316 |
+
" }\n",
|
317 |
+
"</style>\n",
|
318 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
319 |
+
" <thead>\n",
|
320 |
+
" <tr style=\"text-align: right;\">\n",
|
321 |
+
" <th></th>\n",
|
322 |
+
" <th>headline</th>\n",
|
323 |
+
" <th>clickbait</th>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" </thead>\n",
|
326 |
+
" <tbody>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <th>0</th>\n",
|
329 |
+
" <td>filipino activist arrested for disrupting mani...</td>\n",
|
330 |
+
" <td>0</td>\n",
|
331 |
+
" </tr>\n",
|
332 |
+
" <tr>\n",
|
333 |
+
" <th>1</th>\n",
|
334 |
+
" <td>international board fixes soccer field size ha...</td>\n",
|
335 |
+
" <td>0</td>\n",
|
336 |
+
" </tr>\n",
|
337 |
+
" <tr>\n",
|
338 |
+
" <th>2</th>\n",
|
339 |
+
" <td>24 rules for women on a first date with a man</td>\n",
|
340 |
+
" <td>1</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>3</th>\n",
|
344 |
+
" <td>political fallout from the sacking of professo...</td>\n",
|
345 |
+
" <td>0</td>\n",
|
346 |
+
" </tr>\n",
|
347 |
+
" <tr>\n",
|
348 |
+
" <th>4</th>\n",
|
349 |
+
" <td>which clueless character are you based on your...</td>\n",
|
350 |
+
" <td>1</td>\n",
|
351 |
+
" </tr>\n",
|
352 |
+
" <tr>\n",
|
353 |
+
" <th>...</th>\n",
|
354 |
+
" <td>...</td>\n",
|
355 |
+
" <td>...</td>\n",
|
356 |
+
" </tr>\n",
|
357 |
+
" <tr>\n",
|
358 |
+
" <th>31995</th>\n",
|
359 |
+
" <td>rocket strike near hotel in afghan capital inj...</td>\n",
|
360 |
+
" <td>0</td>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" <tr>\n",
|
363 |
+
" <th>31996</th>\n",
|
364 |
+
" <td>how well do you remember the first episode of ...</td>\n",
|
365 |
+
" <td>1</td>\n",
|
366 |
+
" </tr>\n",
|
367 |
+
" <tr>\n",
|
368 |
+
" <th>31997</th>\n",
|
369 |
+
" <td>16 photos from the delhi queer pride parade th...</td>\n",
|
370 |
+
" <td>1</td>\n",
|
371 |
+
" </tr>\n",
|
372 |
+
" <tr>\n",
|
373 |
+
" <th>31998</th>\n",
|
374 |
+
" <td>33 of the most canadian sentences ever</td>\n",
|
375 |
+
" <td>1</td>\n",
|
376 |
+
" </tr>\n",
|
377 |
+
" <tr>\n",
|
378 |
+
" <th>31999</th>\n",
|
379 |
+
" <td>man killed after shop robbery in west yorkshir...</td>\n",
|
380 |
+
" <td>0</td>\n",
|
381 |
+
" </tr>\n",
|
382 |
+
" </tbody>\n",
|
383 |
+
"</table>\n",
|
384 |
+
"<p>32000 rows × 2 columns</p>\n",
|
385 |
+
"</div>\n",
|
386 |
+
" <div class=\"colab-df-buttons\">\n",
|
387 |
+
"\n",
|
388 |
+
" <div class=\"colab-df-container\">\n",
|
389 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d5c6de19-cc3d-4e4a-b949-90707b35d029')\"\n",
|
390 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
391 |
+
" style=\"display:none;\">\n",
|
392 |
+
"\n",
|
393 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
394 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
395 |
+
" </svg>\n",
|
396 |
+
" </button>\n",
|
397 |
+
"\n",
|
398 |
+
" <style>\n",
|
399 |
+
" .colab-df-container {\n",
|
400 |
+
" display:flex;\n",
|
401 |
+
" gap: 12px;\n",
|
402 |
+
" }\n",
|
403 |
+
"\n",
|
404 |
+
" .colab-df-convert {\n",
|
405 |
+
" background-color: #E8F0FE;\n",
|
406 |
+
" border: none;\n",
|
407 |
+
" border-radius: 50%;\n",
|
408 |
+
" cursor: pointer;\n",
|
409 |
+
" display: none;\n",
|
410 |
+
" fill: #1967D2;\n",
|
411 |
+
" height: 32px;\n",
|
412 |
+
" padding: 0 0 0 0;\n",
|
413 |
+
" width: 32px;\n",
|
414 |
+
" }\n",
|
415 |
+
"\n",
|
416 |
+
" .colab-df-convert:hover {\n",
|
417 |
+
" background-color: #E2EBFA;\n",
|
418 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
419 |
+
" fill: #174EA6;\n",
|
420 |
+
" }\n",
|
421 |
+
"\n",
|
422 |
+
" .colab-df-buttons div {\n",
|
423 |
+
" margin-bottom: 4px;\n",
|
424 |
+
" }\n",
|
425 |
+
"\n",
|
426 |
+
" [theme=dark] .colab-df-convert {\n",
|
427 |
+
" background-color: #3B4455;\n",
|
428 |
+
" fill: #D2E3FC;\n",
|
429 |
+
" }\n",
|
430 |
+
"\n",
|
431 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
432 |
+
" background-color: #434B5C;\n",
|
433 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
434 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
435 |
+
" fill: #FFFFFF;\n",
|
436 |
+
" }\n",
|
437 |
+
" </style>\n",
|
438 |
+
"\n",
|
439 |
+
" <script>\n",
|
440 |
+
" const buttonEl =\n",
|
441 |
+
" document.querySelector('#df-d5c6de19-cc3d-4e4a-b949-90707b35d029 button.colab-df-convert');\n",
|
442 |
+
" buttonEl.style.display =\n",
|
443 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
444 |
+
"\n",
|
445 |
+
" async function convertToInteractive(key) {\n",
|
446 |
+
" const element = document.querySelector('#df-d5c6de19-cc3d-4e4a-b949-90707b35d029');\n",
|
447 |
+
" const dataTable =\n",
|
448 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
449 |
+
" [key], {});\n",
|
450 |
+
" if (!dataTable) return;\n",
|
451 |
+
"\n",
|
452 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
453 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
454 |
+
" + ' to learn more about interactive tables.';\n",
|
455 |
+
" element.innerHTML = '';\n",
|
456 |
+
" dataTable['output_type'] = 'display_data';\n",
|
457 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
458 |
+
" const docLink = document.createElement('div');\n",
|
459 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
460 |
+
" element.appendChild(docLink);\n",
|
461 |
+
" }\n",
|
462 |
+
" </script>\n",
|
463 |
+
" </div>\n",
|
464 |
+
"\n",
|
465 |
+
"\n",
|
466 |
+
"<div id=\"df-ee00eaa1-2597-4b9f-bfbe-34ee45fe0b29\">\n",
|
467 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-ee00eaa1-2597-4b9f-bfbe-34ee45fe0b29')\"\n",
|
468 |
+
" title=\"Suggest charts\"\n",
|
469 |
+
" style=\"display:none;\">\n",
|
470 |
+
"\n",
|
471 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
472 |
+
" width=\"24px\">\n",
|
473 |
+
" <g>\n",
|
474 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
475 |
+
" </g>\n",
|
476 |
+
"</svg>\n",
|
477 |
+
" </button>\n",
|
478 |
+
"\n",
|
479 |
+
"<style>\n",
|
480 |
+
" .colab-df-quickchart {\n",
|
481 |
+
" --bg-color: #E8F0FE;\n",
|
482 |
+
" --fill-color: #1967D2;\n",
|
483 |
+
" --hover-bg-color: #E2EBFA;\n",
|
484 |
+
" --hover-fill-color: #174EA6;\n",
|
485 |
+
" --disabled-fill-color: #AAA;\n",
|
486 |
+
" --disabled-bg-color: #DDD;\n",
|
487 |
+
" }\n",
|
488 |
+
"\n",
|
489 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
490 |
+
" --bg-color: #3B4455;\n",
|
491 |
+
" --fill-color: #D2E3FC;\n",
|
492 |
+
" --hover-bg-color: #434B5C;\n",
|
493 |
+
" --hover-fill-color: #FFFFFF;\n",
|
494 |
+
" --disabled-bg-color: #3B4455;\n",
|
495 |
+
" --disabled-fill-color: #666;\n",
|
496 |
+
" }\n",
|
497 |
+
"\n",
|
498 |
+
" .colab-df-quickchart {\n",
|
499 |
+
" background-color: var(--bg-color);\n",
|
500 |
+
" border: none;\n",
|
501 |
+
" border-radius: 50%;\n",
|
502 |
+
" cursor: pointer;\n",
|
503 |
+
" display: none;\n",
|
504 |
+
" fill: var(--fill-color);\n",
|
505 |
+
" height: 32px;\n",
|
506 |
+
" padding: 0;\n",
|
507 |
+
" width: 32px;\n",
|
508 |
+
" }\n",
|
509 |
+
"\n",
|
510 |
+
" .colab-df-quickchart:hover {\n",
|
511 |
+
" background-color: var(--hover-bg-color);\n",
|
512 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
513 |
+
" fill: var(--button-hover-fill-color);\n",
|
514 |
+
" }\n",
|
515 |
+
"\n",
|
516 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
517 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
518 |
+
" background-color: var(--disabled-bg-color);\n",
|
519 |
+
" fill: var(--disabled-fill-color);\n",
|
520 |
+
" box-shadow: none;\n",
|
521 |
+
" }\n",
|
522 |
+
"\n",
|
523 |
+
" .colab-df-spinner {\n",
|
524 |
+
" border: 2px solid var(--fill-color);\n",
|
525 |
+
" border-color: transparent;\n",
|
526 |
+
" border-bottom-color: var(--fill-color);\n",
|
527 |
+
" animation:\n",
|
528 |
+
" spin 1s steps(1) infinite;\n",
|
529 |
+
" }\n",
|
530 |
+
"\n",
|
531 |
+
" @keyframes spin {\n",
|
532 |
+
" 0% {\n",
|
533 |
+
" border-color: transparent;\n",
|
534 |
+
" border-bottom-color: var(--fill-color);\n",
|
535 |
+
" border-left-color: var(--fill-color);\n",
|
536 |
+
" }\n",
|
537 |
+
" 20% {\n",
|
538 |
+
" border-color: transparent;\n",
|
539 |
+
" border-left-color: var(--fill-color);\n",
|
540 |
+
" border-top-color: var(--fill-color);\n",
|
541 |
+
" }\n",
|
542 |
+
" 30% {\n",
|
543 |
+
" border-color: transparent;\n",
|
544 |
+
" border-left-color: var(--fill-color);\n",
|
545 |
+
" border-top-color: var(--fill-color);\n",
|
546 |
+
" border-right-color: var(--fill-color);\n",
|
547 |
+
" }\n",
|
548 |
+
" 40% {\n",
|
549 |
+
" border-color: transparent;\n",
|
550 |
+
" border-right-color: var(--fill-color);\n",
|
551 |
+
" border-top-color: var(--fill-color);\n",
|
552 |
+
" }\n",
|
553 |
+
" 60% {\n",
|
554 |
+
" border-color: transparent;\n",
|
555 |
+
" border-right-color: var(--fill-color);\n",
|
556 |
+
" }\n",
|
557 |
+
" 80% {\n",
|
558 |
+
" border-color: transparent;\n",
|
559 |
+
" border-right-color: var(--fill-color);\n",
|
560 |
+
" border-bottom-color: var(--fill-color);\n",
|
561 |
+
" }\n",
|
562 |
+
" 90% {\n",
|
563 |
+
" border-color: transparent;\n",
|
564 |
+
" border-bottom-color: var(--fill-color);\n",
|
565 |
+
" }\n",
|
566 |
+
" }\n",
|
567 |
+
"</style>\n",
|
568 |
+
"\n",
|
569 |
+
" <script>\n",
|
570 |
+
" async function quickchart(key) {\n",
|
571 |
+
" const quickchartButtonEl =\n",
|
572 |
+
" document.querySelector('#' + key + ' button');\n",
|
573 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
574 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
575 |
+
" try {\n",
|
576 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
577 |
+
" 'suggestCharts', [key], {});\n",
|
578 |
+
" } catch (error) {\n",
|
579 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
580 |
+
" }\n",
|
581 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
582 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
583 |
+
" }\n",
|
584 |
+
" (() => {\n",
|
585 |
+
" let quickchartButtonEl =\n",
|
586 |
+
" document.querySelector('#df-ee00eaa1-2597-4b9f-bfbe-34ee45fe0b29 button');\n",
|
587 |
+
" quickchartButtonEl.style.display =\n",
|
588 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
589 |
+
" })();\n",
|
590 |
+
" </script>\n",
|
591 |
+
"</div>\n",
|
592 |
+
"\n",
|
593 |
+
" <div id=\"id_dd256d94-7a78-4a73-8f42-8ee61fff3d06\">\n",
|
594 |
+
" <style>\n",
|
595 |
+
" .colab-df-generate {\n",
|
596 |
+
" background-color: #E8F0FE;\n",
|
597 |
+
" border: none;\n",
|
598 |
+
" border-radius: 50%;\n",
|
599 |
+
" cursor: pointer;\n",
|
600 |
+
" display: none;\n",
|
601 |
+
" fill: #1967D2;\n",
|
602 |
+
" height: 32px;\n",
|
603 |
+
" padding: 0 0 0 0;\n",
|
604 |
+
" width: 32px;\n",
|
605 |
+
" }\n",
|
606 |
+
"\n",
|
607 |
+
" .colab-df-generate:hover {\n",
|
608 |
+
" background-color: #E2EBFA;\n",
|
609 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
610 |
+
" fill: #174EA6;\n",
|
611 |
+
" }\n",
|
612 |
+
"\n",
|
613 |
+
" [theme=dark] .colab-df-generate {\n",
|
614 |
+
" background-color: #3B4455;\n",
|
615 |
+
" fill: #D2E3FC;\n",
|
616 |
+
" }\n",
|
617 |
+
"\n",
|
618 |
+
" [theme=dark] .colab-df-generate:hover {\n",
|
619 |
+
" background-color: #434B5C;\n",
|
620 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
621 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
622 |
+
" fill: #FFFFFF;\n",
|
623 |
+
" }\n",
|
624 |
+
" </style>\n",
|
625 |
+
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df')\"\n",
|
626 |
+
" title=\"Generate code using this dataframe.\"\n",
|
627 |
+
" style=\"display:none;\">\n",
|
628 |
+
"\n",
|
629 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
630 |
+
" width=\"24px\">\n",
|
631 |
+
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
|
632 |
+
" </svg>\n",
|
633 |
+
" </button>\n",
|
634 |
+
" <script>\n",
|
635 |
+
" (() => {\n",
|
636 |
+
" const buttonEl =\n",
|
637 |
+
" document.querySelector('#id_dd256d94-7a78-4a73-8f42-8ee61fff3d06 button.colab-df-generate');\n",
|
638 |
+
" buttonEl.style.display =\n",
|
639 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
640 |
+
"\n",
|
641 |
+
" buttonEl.onclick = () => {\n",
|
642 |
+
" google.colab.notebook.generateWithVariable('df');\n",
|
643 |
+
" }\n",
|
644 |
+
" })();\n",
|
645 |
+
" </script>\n",
|
646 |
+
" </div>\n",
|
647 |
+
"\n",
|
648 |
+
" </div>\n",
|
649 |
+
" </div>\n"
|
650 |
+
],
|
651 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
652 |
+
"type": "dataframe",
|
653 |
+
"variable_name": "df",
|
654 |
+
"summary": "{\n \"name\": \"df\",\n \"rows\": 32000,\n \"fields\": [\n {\n \"column\": \"headline\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 31998,\n \"samples\": [\n \"prolific television producer aaron spelling dies at 83\",\n \"consumer prices remained steady in april\",\n \"jon hamm playing baseball will soothe the shit outta you\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"clickbait\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
655 |
+
}
|
656 |
+
},
|
657 |
+
"metadata": {},
|
658 |
+
"execution_count": 51
|
659 |
+
}
|
660 |
+
],
|
661 |
+
"source": [
|
662 |
+
"df"
|
663 |
+
]
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"execution_count": null,
|
668 |
+
"metadata": {
|
669 |
+
"colab": {
|
670 |
+
"base_uri": "https://localhost:8080/"
|
671 |
+
},
|
672 |
+
"id": "oB8E9zfkIYmL",
|
673 |
+
"outputId": "0250cb50-7efa-4f87-f7ed-a5fca2cecce4"
|
674 |
+
},
|
675 |
+
"outputs": [
|
676 |
+
{
|
677 |
+
"output_type": "execute_result",
|
678 |
+
"data": {
|
679 |
+
"text/plain": [
|
680 |
+
"Dataset({\n",
|
681 |
+
" features: ['headline', 'clickbait'],\n",
|
682 |
+
" num_rows: 32000\n",
|
683 |
+
"})"
|
684 |
+
]
|
685 |
+
},
|
686 |
+
"metadata": {},
|
687 |
+
"execution_count": 52
|
688 |
+
}
|
689 |
+
],
|
690 |
+
"source": [
|
691 |
+
"pre_processed_dataset = Dataset.from_pandas(df)\n",
|
692 |
+
"pre_processed_dataset"
|
693 |
+
]
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"cell_type": "code",
|
697 |
+
"execution_count": null,
|
698 |
+
"metadata": {
|
699 |
+
"colab": {
|
700 |
+
"base_uri": "https://localhost:8080/"
|
701 |
+
},
|
702 |
+
"id": "oxKb3Y2jIYmM",
|
703 |
+
"outputId": "83845fae-7dbe-4857-c713-4359212078db"
|
704 |
+
},
|
705 |
+
"outputs": [
|
706 |
+
{
|
707 |
+
"output_type": "stream",
|
708 |
+
"name": "stderr",
|
709 |
+
"text": [
|
710 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
711 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
712 |
+
]
|
713 |
+
}
|
714 |
+
],
|
715 |
+
"source": [
|
716 |
+
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') #Downloads the base version of BERT trained on lowercase English text (e.g., \"hello\" and \"Hello\" are treated the same).\n",
|
717 |
+
"model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) #Configures the model to handle a binary classification problem \"clickbait\" vs. \"non-clickbait\".\n"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"cell_type": "code",
|
722 |
+
"execution_count": null,
|
723 |
+
"metadata": {
|
724 |
+
"id": "HRzOKDl_IYmM"
|
725 |
+
},
|
726 |
+
"outputs": [],
|
727 |
+
"source": [
|
728 |
+
"def tokenize_function(batch):\n",
|
729 |
+
" # Tokenize the 'headline' column\n",
|
730 |
+
" return tokenizer(batch['headline'], truncation=True, padding=True, max_length=512)"
|
731 |
+
]
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"cell_type": "code",
|
735 |
+
"execution_count": null,
|
736 |
+
"metadata": {
|
737 |
+
"colab": {
|
738 |
+
"base_uri": "https://localhost:8080/",
|
739 |
+
"height": 49,
|
740 |
+
"referenced_widgets": [
|
741 |
+
"dad32a0edd9841c9ab1ce052f0efd994",
|
742 |
+
"41099ccad51745aeb06c52636ff646ba",
|
743 |
+
"00f15ecb12df4d36aed9ef3135a71f08",
|
744 |
+
"a1121eb967374766bc15ed290c2dc09d",
|
745 |
+
"3b3db9c5766a4fc1908f82d5d86ee86d",
|
746 |
+
"86c7d5da9ac94f4aa7019866cb48da30",
|
747 |
+
"12e0c1a1d2e545db8c89accffb1072fb",
|
748 |
+
"cb1f378c68e3464db6bbe1756ee68b46",
|
749 |
+
"272a34ba164e4b2a88aa1d92a42510b8",
|
750 |
+
"810299000553408ca96ed7b45a8049b8",
|
751 |
+
"93d6dfc7a47d4c76bdbeb868dc0a3369"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
"id": "2AuxGVJJIYmM",
|
755 |
+
"outputId": "4cf193fb-c5ab-4974-aa52-f05beffb4746"
|
756 |
+
},
|
757 |
+
"outputs": [
|
758 |
+
{
|
759 |
+
"output_type": "display_data",
|
760 |
+
"data": {
|
761 |
+
"text/plain": [
|
762 |
+
"Map: 0%| | 0/32000 [00:00<?, ? examples/s]"
|
763 |
+
],
|
764 |
+
"application/vnd.jupyter.widget-view+json": {
|
765 |
+
"version_major": 2,
|
766 |
+
"version_minor": 0,
|
767 |
+
"model_id": "dad32a0edd9841c9ab1ce052f0efd994"
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"metadata": {}
|
771 |
+
}
|
772 |
+
],
|
773 |
+
"source": [
|
774 |
+
"tokenized_datasets = pre_processed_dataset.map(tokenize_function, batched=True)"
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"cell_type": "code",
|
779 |
+
"execution_count": null,
|
780 |
+
"metadata": {
|
781 |
+
"colab": {
|
782 |
+
"base_uri": "https://localhost:8080/"
|
783 |
+
},
|
784 |
+
"id": "_mfTpdzeIYmN",
|
785 |
+
"outputId": "f32b8858-a65c-451d-ecc4-b8d9bf2296f1"
|
786 |
+
},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"output_type": "stream",
|
790 |
+
"name": "stdout",
|
791 |
+
"text": [
|
792 |
+
"Dataset({\n",
|
793 |
+
" features: ['headline', 'clickbait', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
794 |
+
" num_rows: 32000\n",
|
795 |
+
"})\n"
|
796 |
+
]
|
797 |
+
}
|
798 |
+
],
|
799 |
+
"source": [
|
800 |
+
"print(tokenized_datasets)"
|
801 |
+
]
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"cell_type": "code",
|
805 |
+
"source": [
|
806 |
+
"tokenized_datasets = tokenized_datasets.rename_column('clickbait', 'labels')"
|
807 |
+
],
|
808 |
+
"metadata": {
|
809 |
+
"id": "YoXnzpMjNV9N"
|
810 |
+
},
|
811 |
+
"execution_count": null,
|
812 |
+
"outputs": []
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": null,
|
817 |
+
"metadata": {
|
818 |
+
"id": "RaVGS93BIYmN"
|
819 |
+
},
|
820 |
+
"outputs": [],
|
821 |
+
"source": [
|
822 |
+
"split_datasets = tokenized_datasets.train_test_split(test_size=0.2)\n",
|
823 |
+
"\n",
|
824 |
+
"# Further split the train data into train and validation (80% train, 20% validation)\n",
|
825 |
+
"train_val_split = split_datasets['train'].train_test_split(test_size=0.2)\n",
|
826 |
+
"\n",
|
827 |
+
"# Access the splits\n",
|
828 |
+
"train_dataset = train_val_split['train']\n",
|
829 |
+
"validation_dataset = train_val_split['test']\n",
|
830 |
+
"test_dataset = split_datasets['test']"
|
831 |
+
]
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"cell_type": "code",
|
835 |
+
"execution_count": null,
|
836 |
+
"metadata": {
|
837 |
+
"colab": {
|
838 |
+
"base_uri": "https://localhost:8080/"
|
839 |
+
},
|
840 |
+
"id": "8aGzBaiwIYmN",
|
841 |
+
"outputId": "bb8e0f0d-caef-4917-ceb0-c2119e387e63"
|
842 |
+
},
|
843 |
+
"outputs": [
|
844 |
+
{
|
845 |
+
"output_type": "execute_result",
|
846 |
+
"data": {
|
847 |
+
"text/plain": [
|
848 |
+
"DatasetDict({\n",
|
849 |
+
" train: Dataset({\n",
|
850 |
+
" features: ['headline', 'labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
851 |
+
" num_rows: 25600\n",
|
852 |
+
" })\n",
|
853 |
+
" test: Dataset({\n",
|
854 |
+
" features: ['headline', 'labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
855 |
+
" num_rows: 6400\n",
|
856 |
+
" })\n",
|
857 |
+
"})"
|
858 |
+
]
|
859 |
+
},
|
860 |
+
"metadata": {},
|
861 |
+
"execution_count": 59
|
862 |
+
}
|
863 |
+
],
|
864 |
+
"source": [
|
865 |
+
"split_datasets"
|
866 |
+
]
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"cell_type": "code",
|
870 |
+
"execution_count": null,
|
871 |
+
"metadata": {
|
872 |
+
"colab": {
|
873 |
+
"base_uri": "https://localhost:8080/"
|
874 |
+
},
|
875 |
+
"id": "EtWlbJzOIYmN",
|
876 |
+
"outputId": "512de166-e642-4099-f390-dc687be9a44a"
|
877 |
+
},
|
878 |
+
"outputs": [
|
879 |
+
{
|
880 |
+
"output_type": "execute_result",
|
881 |
+
"data": {
|
882 |
+
"text/plain": [
|
883 |
+
"DatasetDict({\n",
|
884 |
+
" train: Dataset({\n",
|
885 |
+
" features: ['headline', 'labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
886 |
+
" num_rows: 20480\n",
|
887 |
+
" })\n",
|
888 |
+
" test: Dataset({\n",
|
889 |
+
" features: ['headline', 'labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
890 |
+
" num_rows: 5120\n",
|
891 |
+
" })\n",
|
892 |
+
"})"
|
893 |
+
]
|
894 |
+
},
|
895 |
+
"metadata": {},
|
896 |
+
"execution_count": 60
|
897 |
+
}
|
898 |
+
],
|
899 |
+
"source": [
|
900 |
+
"train_val_split"
|
901 |
+
]
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "code",
|
905 |
+
"execution_count": null,
|
906 |
+
"metadata": {
|
907 |
+
"colab": {
|
908 |
+
"base_uri": "https://localhost:8080/"
|
909 |
+
},
|
910 |
+
"id": "eWrFzffIIYmO",
|
911 |
+
"outputId": "3bed5240-9259-4ee5-c063-2a33c1c96920"
|
912 |
+
},
|
913 |
+
"outputs": [
|
914 |
+
{
|
915 |
+
"output_type": "execute_result",
|
916 |
+
"data": {
|
917 |
+
"text/plain": [
|
918 |
+
"Dataset({\n",
|
919 |
+
" features: ['headline', 'labels', 'input_ids', 'token_type_ids', 'attention_mask'],\n",
|
920 |
+
" num_rows: 6400\n",
|
921 |
+
"})"
|
922 |
+
]
|
923 |
+
},
|
924 |
+
"metadata": {},
|
925 |
+
"execution_count": 61
|
926 |
+
}
|
927 |
+
],
|
928 |
+
"source": [
|
929 |
+
"test_dataset"
|
930 |
+
]
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"cell_type": "code",
|
934 |
+
"execution_count": null,
|
935 |
+
"metadata": {
|
936 |
+
"id": "POiHrmeeIYmO"
|
937 |
+
},
|
938 |
+
"outputs": [],
|
939 |
+
"source": [
|
940 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
941 |
+
"train_dataloader = DataLoader(\n",
|
942 |
+
" train_dataset, batch_size=16, shuffle=True, collate_fn=data_collator\n",
|
943 |
+
")"
|
944 |
+
]
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"cell_type": "code",
|
948 |
+
"execution_count": null,
|
949 |
+
"metadata": {
|
950 |
+
"colab": {
|
951 |
+
"base_uri": "https://localhost:8080/"
|
952 |
+
},
|
953 |
+
"id": "hOOVVNPwIYmO",
|
954 |
+
"outputId": "b6756add-09fe-4a2c-a0c2-751f8fc11194"
|
955 |
+
},
|
956 |
+
"outputs": [
|
957 |
+
{
|
958 |
+
"output_type": "stream",
|
959 |
+
"name": "stderr",
|
960 |
+
"text": [
|
961 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:591: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
962 |
+
" warnings.warn(\n"
|
963 |
+
]
|
964 |
+
}
|
965 |
+
],
|
966 |
+
"source": [
|
967 |
+
"#AdamW: A type of optimizer that updates the model’s weights during training to minimize the loss.\n",
|
968 |
+
"#lr=5e-5: Sets the learning rate to 0.00005, controlling how much the model adjusts weights during training.\n",
|
969 |
+
"\n",
|
970 |
+
"optimizer = AdamW(model.parameters(), lr=5e-5)"
|
971 |
+
]
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"cell_type": "code",
|
975 |
+
"source": [
|
976 |
+
"import numpy as np\n",
|
977 |
+
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n",
|
978 |
+
"\n",
|
979 |
+
"def compute_metrics(pred):\n",
|
980 |
+
" \"\"\"\n",
|
981 |
+
" Computes and returns a dictionary of metrics (accuracy, precision, recall, F1-score).\n",
|
982 |
+
" \"\"\"\n",
|
983 |
+
" labels = pred.label_ids\n",
|
984 |
+
" preds = pred.predictions.argmax(axis=1)\n",
|
985 |
+
"\n",
|
986 |
+
" accuracy = accuracy_score(labels, preds)\n",
|
987 |
+
" precision = precision_score(labels, preds)\n",
|
988 |
+
" recall = recall_score(labels, preds)\n",
|
989 |
+
" f1 = f1_score(labels, preds)\n",
|
990 |
+
"\n",
|
991 |
+
" return {\"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}"
|
992 |
+
],
|
993 |
+
"metadata": {
|
994 |
+
"id": "F9QmrZ6dSRCk"
|
995 |
+
},
|
996 |
+
"execution_count": null,
|
997 |
+
"outputs": []
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"cell_type": "code",
|
1001 |
+
"execution_count": null,
|
1002 |
+
"metadata": {
|
1003 |
+
"colab": {
|
1004 |
+
"base_uri": "https://localhost:8080/"
|
1005 |
+
},
|
1006 |
+
"id": "Nf8E4KTSIYmP",
|
1007 |
+
"outputId": "22929b6e-85d7-4f39-8c6a-2971fbafbc6b"
|
1008 |
+
},
|
1009 |
+
"outputs": [
|
1010 |
+
{
|
1011 |
+
"output_type": "stream",
|
1012 |
+
"name": "stderr",
|
1013 |
+
"text": [
|
1014 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1575: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
|
1015 |
+
" warnings.warn(\n"
|
1016 |
+
]
|
1017 |
+
}
|
1018 |
+
],
|
1019 |
+
"source": [
|
1020 |
+
"# output_dir: Saves the trained model and logs to a directory named \"results.\"\n",
|
1021 |
+
"# evaluation_strategy=\"epoch\": Evaluates the model after every epoch (one pass through the dataset).\n",
|
1022 |
+
"# learning_rate: Sets the learning rate to 0.00002.\n",
|
1023 |
+
"# num_train_epochs=3: Specifies 3 training iterations through the dataset.\n",
|
1024 |
+
"# weight_decay=0.01: Prevents overfitting by slightly penalizing large model weights.\n",
|
1025 |
+
"\n",
|
1026 |
+
"training_args = TrainingArguments(\n",
|
1027 |
+
" output_dir=\"/content/drive/MyDrive/nlp/results\",\n",
|
1028 |
+
" evaluation_strategy=\"epoch\",\n",
|
1029 |
+
" learning_rate=2e-5,\n",
|
1030 |
+
" per_device_train_batch_size=16,\n",
|
1031 |
+
" per_device_eval_batch_size=16,\n",
|
1032 |
+
" num_train_epochs=3,\n",
|
1033 |
+
" weight_decay=0.01,\n",
|
1034 |
+
")\n"
|
1035 |
+
]
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"cell_type": "code",
|
1039 |
+
"execution_count": null,
|
1040 |
+
"metadata": {
|
1041 |
+
"colab": {
|
1042 |
+
"base_uri": "https://localhost:8080/"
|
1043 |
+
},
|
1044 |
+
"id": "-UvYmvbjIYmP",
|
1045 |
+
"outputId": "1c2f2a41-2cdc-45b7-9a38-8c87975973cd"
|
1046 |
+
},
|
1047 |
+
"outputs": [
|
1048 |
+
{
|
1049 |
+
"output_type": "stream",
|
1050 |
+
"name": "stderr",
|
1051 |
+
"text": [
|
1052 |
+
"<ipython-input-66-8ac8eaf1a160>:5: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
1053 |
+
" trainer = Trainer(\n"
|
1054 |
+
]
|
1055 |
+
}
|
1056 |
+
],
|
1057 |
+
"source": [
|
1058 |
+
"# Creates a Trainer object that automates:\n",
|
1059 |
+
"# Training: Feeds the training dataset into the model.\n",
|
1060 |
+
"# Evaluation: Tests the model's performance on the validation dataset.\n",
|
1061 |
+
"\n",
|
1062 |
+
"trainer = Trainer(\n",
|
1063 |
+
" model=model,\n",
|
1064 |
+
" args=training_args,\n",
|
1065 |
+
" train_dataset=train_dataset,\n",
|
1066 |
+
" eval_dataset=validation_dataset,\n",
|
1067 |
+
" tokenizer=tokenizer,\n",
|
1068 |
+
" data_collator=data_collator,\n",
|
1069 |
+
" compute_metrics=compute_metrics\n",
|
1070 |
+
"\n",
|
1071 |
+
")\n"
|
1072 |
+
]
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"cell_type": "code",
|
1076 |
+
"source": [
|
1077 |
+
"trainer.train()"
|
1078 |
+
],
|
1079 |
+
"metadata": {
|
1080 |
+
"colab": {
|
1081 |
+
"base_uri": "https://localhost:8080/",
|
1082 |
+
"height": 239
|
1083 |
+
},
|
1084 |
+
"id": "qz65S7xdKKJi",
|
1085 |
+
"outputId": "5a2c06d6-89e3-47f3-cb0c-3f73132f564c"
|
1086 |
+
},
|
1087 |
+
"execution_count": null,
|
1088 |
+
"outputs": [
|
1089 |
+
{
|
1090 |
+
"output_type": "display_data",
|
1091 |
+
"data": {
|
1092 |
+
"text/plain": [
|
1093 |
+
"<IPython.core.display.HTML object>"
|
1094 |
+
],
|
1095 |
+
"text/html": [
|
1096 |
+
"\n",
|
1097 |
+
" <div>\n",
|
1098 |
+
" \n",
|
1099 |
+
" <progress value='3840' max='3840' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1100 |
+
" [3840/3840 09:55, Epoch 3/3]\n",
|
1101 |
+
" </div>\n",
|
1102 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
1103 |
+
" <thead>\n",
|
1104 |
+
" <tr style=\"text-align: left;\">\n",
|
1105 |
+
" <th>Epoch</th>\n",
|
1106 |
+
" <th>Training Loss</th>\n",
|
1107 |
+
" <th>Validation Loss</th>\n",
|
1108 |
+
" <th>Accuracy</th>\n",
|
1109 |
+
" <th>Precision</th>\n",
|
1110 |
+
" <th>Recall</th>\n",
|
1111 |
+
" <th>F1</th>\n",
|
1112 |
+
" </tr>\n",
|
1113 |
+
" </thead>\n",
|
1114 |
+
" <tbody>\n",
|
1115 |
+
" <tr>\n",
|
1116 |
+
" <td>1</td>\n",
|
1117 |
+
" <td>0.062700</td>\n",
|
1118 |
+
" <td>0.051676</td>\n",
|
1119 |
+
" <td>0.986133</td>\n",
|
1120 |
+
" <td>0.989864</td>\n",
|
1121 |
+
" <td>0.982585</td>\n",
|
1122 |
+
" <td>0.986211</td>\n",
|
1123 |
+
" </tr>\n",
|
1124 |
+
" <tr>\n",
|
1125 |
+
" <td>2</td>\n",
|
1126 |
+
" <td>0.018100</td>\n",
|
1127 |
+
" <td>0.069427</td>\n",
|
1128 |
+
" <td>0.986328</td>\n",
|
1129 |
+
" <td>0.981979</td>\n",
|
1130 |
+
" <td>0.991099</td>\n",
|
1131 |
+
" <td>0.986518</td>\n",
|
1132 |
+
" </tr>\n",
|
1133 |
+
" <tr>\n",
|
1134 |
+
" <td>3</td>\n",
|
1135 |
+
" <td>0.005600</td>\n",
|
1136 |
+
" <td>0.069584</td>\n",
|
1137 |
+
" <td>0.989258</td>\n",
|
1138 |
+
" <td>0.990306</td>\n",
|
1139 |
+
" <td>0.988390</td>\n",
|
1140 |
+
" <td>0.989347</td>\n",
|
1141 |
+
" </tr>\n",
|
1142 |
+
" </tbody>\n",
|
1143 |
+
"</table><p>"
|
1144 |
+
]
|
1145 |
+
},
|
1146 |
+
"metadata": {}
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"output_type": "execute_result",
|
1150 |
+
"data": {
|
1151 |
+
"text/plain": [
|
1152 |
+
"TrainOutput(global_step=3840, training_loss=0.03588072238489985, metrics={'train_runtime': 595.5357, 'train_samples_per_second': 103.168, 'train_steps_per_second': 6.448, 'total_flos': 1035958669377600.0, 'train_loss': 0.03588072238489985, 'epoch': 3.0})"
|
1153 |
+
]
|
1154 |
+
},
|
1155 |
+
"metadata": {},
|
1156 |
+
"execution_count": 67
|
1157 |
+
}
|
1158 |
+
]
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"cell_type": "code",
|
1162 |
+
"source": [
|
1163 |
+
"model.save_pretrained(\"/content/drive/MyDrive/nlp/fine_tuned_bert\")\n",
|
1164 |
+
"tokenizer.save_pretrained(\"/content/drive/MyDrive/nlp/fine_tuned_bert\")"
|
1165 |
+
],
|
1166 |
+
"metadata": {
|
1167 |
+
"colab": {
|
1168 |
+
"base_uri": "https://localhost:8080/"
|
1169 |
+
},
|
1170 |
+
"id": "d91uceVJKMtJ",
|
1171 |
+
"outputId": "f47a45e0-ac5a-4be7-f6d3-5f04c431b9c7"
|
1172 |
+
},
|
1173 |
+
"execution_count": null,
|
1174 |
+
"outputs": [
|
1175 |
+
{
|
1176 |
+
"output_type": "execute_result",
|
1177 |
+
"data": {
|
1178 |
+
"text/plain": [
|
1179 |
+
"('/content/drive/MyDrive/nlp/fine_tuned_bert/tokenizer_config.json',\n",
|
1180 |
+
" '/content/drive/MyDrive/nlp/fine_tuned_bert/special_tokens_map.json',\n",
|
1181 |
+
" '/content/drive/MyDrive/nlp/fine_tuned_bert/vocab.txt',\n",
|
1182 |
+
" '/content/drive/MyDrive/nlp/fine_tuned_bert/added_tokens.json')"
|
1183 |
+
]
|
1184 |
+
},
|
1185 |
+
"metadata": {},
|
1186 |
+
"execution_count": 68
|
1187 |
+
}
|
1188 |
+
]
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"cell_type": "code",
|
1192 |
+
"source": [
|
1193 |
+
"trainer.save_model(\"/content/drive/MyDrive/nlp/api_saved_bert\")"
|
1194 |
+
],
|
1195 |
+
"metadata": {
|
1196 |
+
"id": "zjeFrP65feAA"
|
1197 |
+
},
|
1198 |
+
"execution_count": null,
|
1199 |
+
"outputs": []
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"cell_type": "code",
|
1203 |
+
"source": [
|
1204 |
+
"results = trainer.evaluate(eval_dataset=test_dataset)\n",
|
1205 |
+
"print(results)"
|
1206 |
+
],
|
1207 |
+
"metadata": {
|
1208 |
+
"colab": {
|
1209 |
+
"base_uri": "https://localhost:8080/",
|
1210 |
+
"height": 74
|
1211 |
+
},
|
1212 |
+
"id": "z-Z_oX4NQy64",
|
1213 |
+
"outputId": "9bebaf03-9b09-4e31-b819-48378162cc91"
|
1214 |
+
},
|
1215 |
+
"execution_count": null,
|
1216 |
+
"outputs": [
|
1217 |
+
{
|
1218 |
+
"output_type": "display_data",
|
1219 |
+
"data": {
|
1220 |
+
"text/plain": [
|
1221 |
+
"<IPython.core.display.HTML object>"
|
1222 |
+
],
|
1223 |
+
"text/html": [
|
1224 |
+
"\n",
|
1225 |
+
" <div>\n",
|
1226 |
+
" \n",
|
1227 |
+
" <progress value='400' max='400' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1228 |
+
" [400/400 00:14]\n",
|
1229 |
+
" </div>\n",
|
1230 |
+
" "
|
1231 |
+
]
|
1232 |
+
},
|
1233 |
+
"metadata": {}
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"output_type": "stream",
|
1237 |
+
"name": "stdout",
|
1238 |
+
"text": [
|
1239 |
+
"{'eval_loss': 0.06335476785898209, 'eval_accuracy': 0.99046875, 'eval_precision': 0.9921826141338337, 'eval_recall': 0.9887815518853226, 'eval_f1': 0.9904791634150147, 'eval_runtime': 14.213, 'eval_samples_per_second': 450.292, 'eval_steps_per_second': 28.143, 'epoch': 3.0}\n"
|
1240 |
+
]
|
1241 |
+
}
|
1242 |
+
]
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"cell_type": "code",
|
1246 |
+
"source": [
|
1247 |
+
"import torch\n",
|
1248 |
+
"\n",
|
1249 |
+
"# Assuming you want to use the GPU\n",
|
1250 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
1251 |
+
"\n",
|
1252 |
+
"# Move your model to the device\n",
|
1253 |
+
"model.to(device)\n",
|
1254 |
+
"\n",
|
1255 |
+
"# Move your input tensors to the device\n",
|
1256 |
+
"text = \"How to get 6 pack abs in 5 days?\"\n",
|
1257 |
+
"inputs = tokenizer(text, return_tensors=\"pt\", truncation=True, max_length=512).to(device)\n",
|
1258 |
+
"\n",
|
1259 |
+
"# Now, run the inference\n",
|
1260 |
+
"outputs = model(**inputs)\n",
|
1261 |
+
"predicted_class = outputs.logits.argmax(dim=1).item()\n",
|
1262 |
+
"\n",
|
1263 |
+
"# Print the prediction\n",
|
1264 |
+
"print(\"Predicted class:\", \"Clickbait\" if predicted_class == 1 else \"Non-Clickbait\")"
|
1265 |
+
],
|
1266 |
+
"metadata": {
|
1267 |
+
"colab": {
|
1268 |
+
"base_uri": "https://localhost:8080/"
|
1269 |
+
},
|
1270 |
+
"id": "KqChnsb6RWKG",
|
1271 |
+
"outputId": "779ac87d-672a-481d-d4a5-a7eb88ac254e"
|
1272 |
+
},
|
1273 |
+
"execution_count": null,
|
1274 |
+
"outputs": [
|
1275 |
+
{
|
1276 |
+
"output_type": "stream",
|
1277 |
+
"name": "stdout",
|
1278 |
+
"text": [
|
1279 |
+
"Predicted class: Clickbait\n"
|
1280 |
+
]
|
1281 |
+
}
|
1282 |
+
]
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"cell_type": "markdown",
|
1286 |
+
"source": [
|
1287 |
+
"##Loading trained model and testing"
|
1288 |
+
],
|
1289 |
+
"metadata": {
|
1290 |
+
"id": "J2ayxrk7SCx4"
|
1291 |
+
}
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"cell_type": "code",
|
1295 |
+
"source": [
|
1296 |
+
"from transformers import BertTokenizer, BertForSequenceClassification\n",
|
1297 |
+
"import pandas as pd\n",
|
1298 |
+
"from datasets import Dataset\n",
|
1299 |
+
"from datasets import load_dataset\n",
|
1300 |
+
"from torch.utils.data import DataLoader\n",
|
1301 |
+
"from transformers import DataCollatorWithPadding\n",
|
1302 |
+
"from transformers import AdamW\n",
|
1303 |
+
"from transformers import Trainer, TrainingArguments\n",
|
1304 |
+
"import torch"
|
1305 |
+
],
|
1306 |
+
"metadata": {
|
1307 |
+
"id": "ufJ_kSdJTB29"
|
1308 |
+
},
|
1309 |
+
"execution_count": 8,
|
1310 |
+
"outputs": []
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"cell_type": "code",
|
1314 |
+
"source": [
|
1315 |
+
"from transformers import BertTokenizer, BertForSequenceClassification\n",
|
1316 |
+
"\n",
|
1317 |
+
"# Load the saved model and tokenizer\n",
|
1318 |
+
"model = BertForSequenceClassification.from_pretrained(\"/content/drive/MyDrive/nlp/fine_tuned_bert\")\n",
|
1319 |
+
"tokenizer = BertTokenizer.from_pretrained(\"/content/drive/MyDrive/nlp/fine_tuned_bert\")\n"
|
1320 |
+
],
|
1321 |
+
"metadata": {
|
1322 |
+
"colab": {
|
1323 |
+
"base_uri": "https://localhost:8080/",
|
1324 |
+
"height": 349
|
1325 |
+
},
|
1326 |
+
"id": "Ve8bgTaoSCM_",
|
1327 |
+
"outputId": "8fcfda48-209e-4468-b2f3-883d084ae0c4"
|
1328 |
+
},
|
1329 |
+
"execution_count": 10,
|
1330 |
+
"outputs": [
|
1331 |
+
{
|
1332 |
+
"output_type": "error",
|
1333 |
+
"ename": "OSError",
|
1334 |
+
"evalue": "Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /content/drive/MyDrive/nlp/fine_tuned_bert.",
|
1335 |
+
"traceback": [
|
1336 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1337 |
+
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
|
1338 |
+
"\u001b[0;32m<ipython-input-10-4a37b2773130>\u001b[0m in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;31m# Load the saved model and tokenizer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBertForSequenceClassification\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/drive/MyDrive/nlp/fine_tuned_bert\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mtokenizer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mBertTokenizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/drive/MyDrive/nlp/fine_tuned_bert\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1339 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, weights_only, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 3777\u001b[0m )\n\u001b[1;32m 3778\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3779\u001b[0;31m raise EnvironmentError(\n\u001b[0m\u001b[1;32m 3780\u001b[0m \u001b[0;34mf\"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {_add_variant(SAFE_WEIGHTS_NAME, variant)},\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3781\u001b[0m \u001b[0;34mf\" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1340 |
+
"\u001b[0;31mOSError\u001b[0m: Error no file named pytorch_model.bin, model.safetensors, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /content/drive/MyDrive/nlp/fine_tuned_bert."
|
1341 |
+
]
|
1342 |
+
}
|
1343 |
+
]
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"cell_type": "markdown",
|
1347 |
+
"source": [],
|
1348 |
+
"metadata": {
|
1349 |
+
"id": "P6PZkbpSanjH"
|
1350 |
+
}
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"cell_type": "code",
|
1354 |
+
"source": [
|
1355 |
+
"\n",
|
1356 |
+
"text = \"Is this a clickbait headline?\"\n",
|
1357 |
+
"inputs = tokenizer(text, return_tensors=\"pt\", truncation=True, max_length=512)\n",
|
1358 |
+
"outputs = model(**inputs)\n",
|
1359 |
+
"predicted_class = outputs.logits.argmax(dim=1).item()\n",
|
1360 |
+
"\n",
|
1361 |
+
"# Print the prediction\n",
|
1362 |
+
"print(\"Predicted class:\", \"Clickbait\" if predicted_class == 1 else \"Non-Clickbait\")\n"
|
1363 |
+
],
|
1364 |
+
"metadata": {
|
1365 |
+
"id": "Cayo8SX1Sv2V"
|
1366 |
+
},
|
1367 |
+
"execution_count": null,
|
1368 |
+
"outputs": []
|
1369 |
+
}
|
1370 |
+
],
|
1371 |
+
"metadata": {
|
1372 |
+
"kernelspec": {
|
1373 |
+
"display_name": "Python 3",
|
1374 |
+
"name": "python3"
|
1375 |
+
},
|
1376 |
+
"language_info": {
|
1377 |
+
"codemirror_mode": {
|
1378 |
+
"name": "ipython",
|
1379 |
+
"version": 3
|
1380 |
+
},
|
1381 |
+
"file_extension": ".py",
|
1382 |
+
"mimetype": "text/x-python",
|
1383 |
+
"name": "python",
|
1384 |
+
"nbconvert_exporter": "python",
|
1385 |
+
"pygments_lexer": "ipython3",
|
1386 |
+
"version": "3.12.4"
|
1387 |
+
},
|
1388 |
+
"colab": {
|
1389 |
+
"provenance": [],
|
1390 |
+
"gpuType": "T4"
|
1391 |
+
},
|
1392 |
+
"accelerator": "GPU",
|
1393 |
+
"widgets": {
|
1394 |
+
"application/vnd.jupyter.widget-state+json": {
|
1395 |
+
"dad32a0edd9841c9ab1ce052f0efd994": {
|
1396 |
+
"model_module": "@jupyter-widgets/controls",
|
1397 |
+
"model_name": "HBoxModel",
|
1398 |
+
"model_module_version": "1.5.0",
|
1399 |
+
"state": {
|
1400 |
+
"_dom_classes": [],
|
1401 |
+
"_model_module": "@jupyter-widgets/controls",
|
1402 |
+
"_model_module_version": "1.5.0",
|
1403 |
+
"_model_name": "HBoxModel",
|
1404 |
+
"_view_count": null,
|
1405 |
+
"_view_module": "@jupyter-widgets/controls",
|
1406 |
+
"_view_module_version": "1.5.0",
|
1407 |
+
"_view_name": "HBoxView",
|
1408 |
+
"box_style": "",
|
1409 |
+
"children": [
|
1410 |
+
"IPY_MODEL_41099ccad51745aeb06c52636ff646ba",
|
1411 |
+
"IPY_MODEL_00f15ecb12df4d36aed9ef3135a71f08",
|
1412 |
+
"IPY_MODEL_a1121eb967374766bc15ed290c2dc09d"
|
1413 |
+
],
|
1414 |
+
"layout": "IPY_MODEL_3b3db9c5766a4fc1908f82d5d86ee86d"
|
1415 |
+
}
|
1416 |
+
},
|
1417 |
+
"41099ccad51745aeb06c52636ff646ba": {
|
1418 |
+
"model_module": "@jupyter-widgets/controls",
|
1419 |
+
"model_name": "HTMLModel",
|
1420 |
+
"model_module_version": "1.5.0",
|
1421 |
+
"state": {
|
1422 |
+
"_dom_classes": [],
|
1423 |
+
"_model_module": "@jupyter-widgets/controls",
|
1424 |
+
"_model_module_version": "1.5.0",
|
1425 |
+
"_model_name": "HTMLModel",
|
1426 |
+
"_view_count": null,
|
1427 |
+
"_view_module": "@jupyter-widgets/controls",
|
1428 |
+
"_view_module_version": "1.5.0",
|
1429 |
+
"_view_name": "HTMLView",
|
1430 |
+
"description": "",
|
1431 |
+
"description_tooltip": null,
|
1432 |
+
"layout": "IPY_MODEL_86c7d5da9ac94f4aa7019866cb48da30",
|
1433 |
+
"placeholder": "",
|
1434 |
+
"style": "IPY_MODEL_12e0c1a1d2e545db8c89accffb1072fb",
|
1435 |
+
"value": "Map: 100%"
|
1436 |
+
}
|
1437 |
+
},
|
1438 |
+
"00f15ecb12df4d36aed9ef3135a71f08": {
|
1439 |
+
"model_module": "@jupyter-widgets/controls",
|
1440 |
+
"model_name": "FloatProgressModel",
|
1441 |
+
"model_module_version": "1.5.0",
|
1442 |
+
"state": {
|
1443 |
+
"_dom_classes": [],
|
1444 |
+
"_model_module": "@jupyter-widgets/controls",
|
1445 |
+
"_model_module_version": "1.5.0",
|
1446 |
+
"_model_name": "FloatProgressModel",
|
1447 |
+
"_view_count": null,
|
1448 |
+
"_view_module": "@jupyter-widgets/controls",
|
1449 |
+
"_view_module_version": "1.5.0",
|
1450 |
+
"_view_name": "ProgressView",
|
1451 |
+
"bar_style": "success",
|
1452 |
+
"description": "",
|
1453 |
+
"description_tooltip": null,
|
1454 |
+
"layout": "IPY_MODEL_cb1f378c68e3464db6bbe1756ee68b46",
|
1455 |
+
"max": 32000,
|
1456 |
+
"min": 0,
|
1457 |
+
"orientation": "horizontal",
|
1458 |
+
"style": "IPY_MODEL_272a34ba164e4b2a88aa1d92a42510b8",
|
1459 |
+
"value": 32000
|
1460 |
+
}
|
1461 |
+
},
|
1462 |
+
"a1121eb967374766bc15ed290c2dc09d": {
|
1463 |
+
"model_module": "@jupyter-widgets/controls",
|
1464 |
+
"model_name": "HTMLModel",
|
1465 |
+
"model_module_version": "1.5.0",
|
1466 |
+
"state": {
|
1467 |
+
"_dom_classes": [],
|
1468 |
+
"_model_module": "@jupyter-widgets/controls",
|
1469 |
+
"_model_module_version": "1.5.0",
|
1470 |
+
"_model_name": "HTMLModel",
|
1471 |
+
"_view_count": null,
|
1472 |
+
"_view_module": "@jupyter-widgets/controls",
|
1473 |
+
"_view_module_version": "1.5.0",
|
1474 |
+
"_view_name": "HTMLView",
|
1475 |
+
"description": "",
|
1476 |
+
"description_tooltip": null,
|
1477 |
+
"layout": "IPY_MODEL_810299000553408ca96ed7b45a8049b8",
|
1478 |
+
"placeholder": "",
|
1479 |
+
"style": "IPY_MODEL_93d6dfc7a47d4c76bdbeb868dc0a3369",
|
1480 |
+
"value": " 32000/32000 [00:30<00:00, 1034.18 examples/s]"
|
1481 |
+
}
|
1482 |
+
},
|
1483 |
+
"3b3db9c5766a4fc1908f82d5d86ee86d": {
|
1484 |
+
"model_module": "@jupyter-widgets/base",
|
1485 |
+
"model_name": "LayoutModel",
|
1486 |
+
"model_module_version": "1.2.0",
|
1487 |
+
"state": {
|
1488 |
+
"_model_module": "@jupyter-widgets/base",
|
1489 |
+
"_model_module_version": "1.2.0",
|
1490 |
+
"_model_name": "LayoutModel",
|
1491 |
+
"_view_count": null,
|
1492 |
+
"_view_module": "@jupyter-widgets/base",
|
1493 |
+
"_view_module_version": "1.2.0",
|
1494 |
+
"_view_name": "LayoutView",
|
1495 |
+
"align_content": null,
|
1496 |
+
"align_items": null,
|
1497 |
+
"align_self": null,
|
1498 |
+
"border": null,
|
1499 |
+
"bottom": null,
|
1500 |
+
"display": null,
|
1501 |
+
"flex": null,
|
1502 |
+
"flex_flow": null,
|
1503 |
+
"grid_area": null,
|
1504 |
+
"grid_auto_columns": null,
|
1505 |
+
"grid_auto_flow": null,
|
1506 |
+
"grid_auto_rows": null,
|
1507 |
+
"grid_column": null,
|
1508 |
+
"grid_gap": null,
|
1509 |
+
"grid_row": null,
|
1510 |
+
"grid_template_areas": null,
|
1511 |
+
"grid_template_columns": null,
|
1512 |
+
"grid_template_rows": null,
|
1513 |
+
"height": null,
|
1514 |
+
"justify_content": null,
|
1515 |
+
"justify_items": null,
|
1516 |
+
"left": null,
|
1517 |
+
"margin": null,
|
1518 |
+
"max_height": null,
|
1519 |
+
"max_width": null,
|
1520 |
+
"min_height": null,
|
1521 |
+
"min_width": null,
|
1522 |
+
"object_fit": null,
|
1523 |
+
"object_position": null,
|
1524 |
+
"order": null,
|
1525 |
+
"overflow": null,
|
1526 |
+
"overflow_x": null,
|
1527 |
+
"overflow_y": null,
|
1528 |
+
"padding": null,
|
1529 |
+
"right": null,
|
1530 |
+
"top": null,
|
1531 |
+
"visibility": null,
|
1532 |
+
"width": null
|
1533 |
+
}
|
1534 |
+
},
|
1535 |
+
"86c7d5da9ac94f4aa7019866cb48da30": {
|
1536 |
+
"model_module": "@jupyter-widgets/base",
|
1537 |
+
"model_name": "LayoutModel",
|
1538 |
+
"model_module_version": "1.2.0",
|
1539 |
+
"state": {
|
1540 |
+
"_model_module": "@jupyter-widgets/base",
|
1541 |
+
"_model_module_version": "1.2.0",
|
1542 |
+
"_model_name": "LayoutModel",
|
1543 |
+
"_view_count": null,
|
1544 |
+
"_view_module": "@jupyter-widgets/base",
|
1545 |
+
"_view_module_version": "1.2.0",
|
1546 |
+
"_view_name": "LayoutView",
|
1547 |
+
"align_content": null,
|
1548 |
+
"align_items": null,
|
1549 |
+
"align_self": null,
|
1550 |
+
"border": null,
|
1551 |
+
"bottom": null,
|
1552 |
+
"display": null,
|
1553 |
+
"flex": null,
|
1554 |
+
"flex_flow": null,
|
1555 |
+
"grid_area": null,
|
1556 |
+
"grid_auto_columns": null,
|
1557 |
+
"grid_auto_flow": null,
|
1558 |
+
"grid_auto_rows": null,
|
1559 |
+
"grid_column": null,
|
1560 |
+
"grid_gap": null,
|
1561 |
+
"grid_row": null,
|
1562 |
+
"grid_template_areas": null,
|
1563 |
+
"grid_template_columns": null,
|
1564 |
+
"grid_template_rows": null,
|
1565 |
+
"height": null,
|
1566 |
+
"justify_content": null,
|
1567 |
+
"justify_items": null,
|
1568 |
+
"left": null,
|
1569 |
+
"margin": null,
|
1570 |
+
"max_height": null,
|
1571 |
+
"max_width": null,
|
1572 |
+
"min_height": null,
|
1573 |
+
"min_width": null,
|
1574 |
+
"object_fit": null,
|
1575 |
+
"object_position": null,
|
1576 |
+
"order": null,
|
1577 |
+
"overflow": null,
|
1578 |
+
"overflow_x": null,
|
1579 |
+
"overflow_y": null,
|
1580 |
+
"padding": null,
|
1581 |
+
"right": null,
|
1582 |
+
"top": null,
|
1583 |
+
"visibility": null,
|
1584 |
+
"width": null
|
1585 |
+
}
|
1586 |
+
},
|
1587 |
+
"12e0c1a1d2e545db8c89accffb1072fb": {
|
1588 |
+
"model_module": "@jupyter-widgets/controls",
|
1589 |
+
"model_name": "DescriptionStyleModel",
|
1590 |
+
"model_module_version": "1.5.0",
|
1591 |
+
"state": {
|
1592 |
+
"_model_module": "@jupyter-widgets/controls",
|
1593 |
+
"_model_module_version": "1.5.0",
|
1594 |
+
"_model_name": "DescriptionStyleModel",
|
1595 |
+
"_view_count": null,
|
1596 |
+
"_view_module": "@jupyter-widgets/base",
|
1597 |
+
"_view_module_version": "1.2.0",
|
1598 |
+
"_view_name": "StyleView",
|
1599 |
+
"description_width": ""
|
1600 |
+
}
|
1601 |
+
},
|
1602 |
+
"cb1f378c68e3464db6bbe1756ee68b46": {
|
1603 |
+
"model_module": "@jupyter-widgets/base",
|
1604 |
+
"model_name": "LayoutModel",
|
1605 |
+
"model_module_version": "1.2.0",
|
1606 |
+
"state": {
|
1607 |
+
"_model_module": "@jupyter-widgets/base",
|
1608 |
+
"_model_module_version": "1.2.0",
|
1609 |
+
"_model_name": "LayoutModel",
|
1610 |
+
"_view_count": null,
|
1611 |
+
"_view_module": "@jupyter-widgets/base",
|
1612 |
+
"_view_module_version": "1.2.0",
|
1613 |
+
"_view_name": "LayoutView",
|
1614 |
+
"align_content": null,
|
1615 |
+
"align_items": null,
|
1616 |
+
"align_self": null,
|
1617 |
+
"border": null,
|
1618 |
+
"bottom": null,
|
1619 |
+
"display": null,
|
1620 |
+
"flex": null,
|
1621 |
+
"flex_flow": null,
|
1622 |
+
"grid_area": null,
|
1623 |
+
"grid_auto_columns": null,
|
1624 |
+
"grid_auto_flow": null,
|
1625 |
+
"grid_auto_rows": null,
|
1626 |
+
"grid_column": null,
|
1627 |
+
"grid_gap": null,
|
1628 |
+
"grid_row": null,
|
1629 |
+
"grid_template_areas": null,
|
1630 |
+
"grid_template_columns": null,
|
1631 |
+
"grid_template_rows": null,
|
1632 |
+
"height": null,
|
1633 |
+
"justify_content": null,
|
1634 |
+
"justify_items": null,
|
1635 |
+
"left": null,
|
1636 |
+
"margin": null,
|
1637 |
+
"max_height": null,
|
1638 |
+
"max_width": null,
|
1639 |
+
"min_height": null,
|
1640 |
+
"min_width": null,
|
1641 |
+
"object_fit": null,
|
1642 |
+
"object_position": null,
|
1643 |
+
"order": null,
|
1644 |
+
"overflow": null,
|
1645 |
+
"overflow_x": null,
|
1646 |
+
"overflow_y": null,
|
1647 |
+
"padding": null,
|
1648 |
+
"right": null,
|
1649 |
+
"top": null,
|
1650 |
+
"visibility": null,
|
1651 |
+
"width": null
|
1652 |
+
}
|
1653 |
+
},
|
1654 |
+
"272a34ba164e4b2a88aa1d92a42510b8": {
|
1655 |
+
"model_module": "@jupyter-widgets/controls",
|
1656 |
+
"model_name": "ProgressStyleModel",
|
1657 |
+
"model_module_version": "1.5.0",
|
1658 |
+
"state": {
|
1659 |
+
"_model_module": "@jupyter-widgets/controls",
|
1660 |
+
"_model_module_version": "1.5.0",
|
1661 |
+
"_model_name": "ProgressStyleModel",
|
1662 |
+
"_view_count": null,
|
1663 |
+
"_view_module": "@jupyter-widgets/base",
|
1664 |
+
"_view_module_version": "1.2.0",
|
1665 |
+
"_view_name": "StyleView",
|
1666 |
+
"bar_color": null,
|
1667 |
+
"description_width": ""
|
1668 |
+
}
|
1669 |
+
},
|
1670 |
+
"810299000553408ca96ed7b45a8049b8": {
|
1671 |
+
"model_module": "@jupyter-widgets/base",
|
1672 |
+
"model_name": "LayoutModel",
|
1673 |
+
"model_module_version": "1.2.0",
|
1674 |
+
"state": {
|
1675 |
+
"_model_module": "@jupyter-widgets/base",
|
1676 |
+
"_model_module_version": "1.2.0",
|
1677 |
+
"_model_name": "LayoutModel",
|
1678 |
+
"_view_count": null,
|
1679 |
+
"_view_module": "@jupyter-widgets/base",
|
1680 |
+
"_view_module_version": "1.2.0",
|
1681 |
+
"_view_name": "LayoutView",
|
1682 |
+
"align_content": null,
|
1683 |
+
"align_items": null,
|
1684 |
+
"align_self": null,
|
1685 |
+
"border": null,
|
1686 |
+
"bottom": null,
|
1687 |
+
"display": null,
|
1688 |
+
"flex": null,
|
1689 |
+
"flex_flow": null,
|
1690 |
+
"grid_area": null,
|
1691 |
+
"grid_auto_columns": null,
|
1692 |
+
"grid_auto_flow": null,
|
1693 |
+
"grid_auto_rows": null,
|
1694 |
+
"grid_column": null,
|
1695 |
+
"grid_gap": null,
|
1696 |
+
"grid_row": null,
|
1697 |
+
"grid_template_areas": null,
|
1698 |
+
"grid_template_columns": null,
|
1699 |
+
"grid_template_rows": null,
|
1700 |
+
"height": null,
|
1701 |
+
"justify_content": null,
|
1702 |
+
"justify_items": null,
|
1703 |
+
"left": null,
|
1704 |
+
"margin": null,
|
1705 |
+
"max_height": null,
|
1706 |
+
"max_width": null,
|
1707 |
+
"min_height": null,
|
1708 |
+
"min_width": null,
|
1709 |
+
"object_fit": null,
|
1710 |
+
"object_position": null,
|
1711 |
+
"order": null,
|
1712 |
+
"overflow": null,
|
1713 |
+
"overflow_x": null,
|
1714 |
+
"overflow_y": null,
|
1715 |
+
"padding": null,
|
1716 |
+
"right": null,
|
1717 |
+
"top": null,
|
1718 |
+
"visibility": null,
|
1719 |
+
"width": null
|
1720 |
+
}
|
1721 |
+
},
|
1722 |
+
"93d6dfc7a47d4c76bdbeb868dc0a3369": {
|
1723 |
+
"model_module": "@jupyter-widgets/controls",
|
1724 |
+
"model_name": "DescriptionStyleModel",
|
1725 |
+
"model_module_version": "1.5.0",
|
1726 |
+
"state": {
|
1727 |
+
"_model_module": "@jupyter-widgets/controls",
|
1728 |
+
"_model_module_version": "1.5.0",
|
1729 |
+
"_model_name": "DescriptionStyleModel",
|
1730 |
+
"_view_count": null,
|
1731 |
+
"_view_module": "@jupyter-widgets/base",
|
1732 |
+
"_view_module_version": "1.2.0",
|
1733 |
+
"_view_name": "StyleView",
|
1734 |
+
"description_width": ""
|
1735 |
+
}
|
1736 |
+
}
|
1737 |
+
}
|
1738 |
+
}
|
1739 |
+
},
|
1740 |
+
"nbformat": 4,
|
1741 |
+
"nbformat_minor": 0
|
1742 |
+
}
|