abrotech commited on
Commit
ce2b988
Β·
verified Β·
1 Parent(s): dc32f7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py CHANGED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load Hugging Face model and tokenizer
5
+ model_name = "abrotech/Zora-ALM-7.2B-gguf" # Your Hugging Face model space
6
+ model = AutoModelForCausalLM.from_pretrained(model_name)
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+
9
+ # Define function to handle user input and generate response
10
+ def generate_response(user_input):
11
+ inputs = tokenizer(user_input, return_tensors="pt")
12
+ outputs = model.generate(input_ids=inputs["input_ids"], max_length=150, temperature=0.7)
13
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
+ return response
15
+
16
+ # Set up the Gradio interface
17
+ with gr.Blocks() as demo:
18
+ gr.HTML("<h1 style='text-align: center;'>Welcome to Zora Assistant</h1>")
19
+ gr.HTML("<p style='text-align: center;'>Ask anything and Zora will answer!</p>")
20
+
21
+ with gr.Row():
22
+ with gr.Column():
23
+ user_input = gr.Textbox(label="Enter your question", placeholder="Ask Zora anything...")
24
+ submit_btn = gr.Button("Get Answer")
25
+ response_output = gr.Textbox(label="Zora's Answer", interactive=False)
26
+
27
+ submit_btn.click(generate_response, inputs=user_input, outputs=response_output)
28
+
29
+ # Launch the Gradio app
30
+ demo.launch(share=True)