import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load Hugging Face model and tokenizer model_name = "abrotech/Zora-ALM-7.2B-gguf" # Your Hugging Face model space model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define function to handle user input and generate response def generate_response(user_input): inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(input_ids=inputs["input_ids"], max_length=150, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Set up the Gradio interface with gr.Blocks() as demo: gr.HTML("

Welcome to Zora Assistant

") gr.HTML("

Ask anything and Zora will answer!

") with gr.Row(): with gr.Column(): user_input = gr.Textbox(label="Enter your question", placeholder="Ask Zora anything...") submit_btn = gr.Button("Get Answer") response_output = gr.Textbox(label="Zora's Answer", interactive=False) submit_btn.click(generate_response, inputs=user_input, outputs=response_output) # Launch the Gradio app demo.launch(share=True)