Spaces:
Runtime error
Runtime error
VenkateshRoshan
commited on
Commit
·
262548b
1
Parent(s):
771d614
requirements updated
Browse files
app_hf.py
CHANGED
@@ -8,13 +8,14 @@ import tarfile
|
|
8 |
from typing import List, Tuple
|
9 |
import boto3
|
10 |
import logging
|
|
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
class CustomerSupportBot:
|
17 |
-
def __init__(self, model_path=
|
18 |
"""
|
19 |
Initialize the customer support bot with the fine-tuned model.
|
20 |
|
@@ -22,40 +23,60 @@ class CustomerSupportBot:
|
|
22 |
model_path (str): Path to the saved model and tokenizer
|
23 |
"""
|
24 |
self.process = psutil.Process(os.getpid())
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
self.s3 = boto3.client("s3")
|
28 |
self.model_key = "models/model.tar.gz"
|
29 |
self.bucket_name = "customer-support-gpt"
|
30 |
|
31 |
# Download and load the model
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def download_and_load_model(self):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
|
61 |
try:
|
@@ -94,107 +115,118 @@ class CustomerSupportBot:
|
|
94 |
|
95 |
|
96 |
def create_chat_interface():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
return "", history
|
102 |
-
|
103 |
-
bot_response = bot.generate_response(message)
|
104 |
-
|
105 |
-
# Log resource usage
|
106 |
-
usage = bot.monitor_resources()
|
107 |
-
print("Resource Usage:", usage)
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Row():
|
134 |
-
msg = gr.Textbox(
|
135 |
-
label="Your Message",
|
136 |
-
placeholder="Type your message here...",
|
137 |
-
lines=2,
|
138 |
-
elem_classes="message-box"
|
139 |
-
)
|
140 |
-
|
141 |
-
with gr.Row(elem_classes="button-row"):
|
142 |
-
submit = gr.Button("Send Message", variant="primary")
|
143 |
-
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
|
144 |
-
|
145 |
-
# Add example queries in a separate row
|
146 |
-
with gr.Row():
|
147 |
-
gr.Examples(
|
148 |
-
examples=[
|
149 |
-
"How do I reset my password?",
|
150 |
-
"What are your shipping policies?",
|
151 |
-
"I want to return a product.",
|
152 |
-
"How can I track my order?",
|
153 |
-
"What payment methods do you accept?"
|
154 |
-
],
|
155 |
-
inputs=msg,
|
156 |
-
label="Example Questions"
|
157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
|
182 |
-
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
8 |
from typing import List, Tuple
|
9 |
import boto3
|
10 |
import logging
|
11 |
+
from pathlib import Path
|
12 |
|
13 |
# Set up logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
class CustomerSupportBot:
|
18 |
+
def __init__(self, model_path=None):
|
19 |
"""
|
20 |
Initialize the customer support bot with the fine-tuned model.
|
21 |
|
|
|
23 |
model_path (str): Path to the saved model and tokenizer
|
24 |
"""
|
25 |
self.process = psutil.Process(os.getpid())
|
26 |
+
|
27 |
+
if model_path is None:
|
28 |
+
self.model_path = os.path.join(os.path.expanduser("~"), "customer_support_gpt")
|
29 |
+
else:
|
30 |
+
self.model_path = model_path
|
31 |
+
|
32 |
+
|
33 |
+
self.model_path = Path(self.model_path)
|
34 |
+
self.model_file_path = self.model_path / "model.tar.gz"
|
35 |
+
|
36 |
self.s3 = boto3.client("s3")
|
37 |
self.model_key = "models/model.tar.gz"
|
38 |
self.bucket_name = "customer-support-gpt"
|
39 |
|
40 |
# Download and load the model
|
41 |
+
try:
|
42 |
+
self.download_and_load_model()
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
45 |
+
raise
|
46 |
|
47 |
def download_and_load_model(self):
|
48 |
+
try:
|
49 |
+
# Create model directory if it doesn't exist
|
50 |
+
self.model_path.mkdir(parents=True, exist_ok=True)
|
51 |
+
logger.info(f"Using model directory: {self.model_path}")
|
52 |
+
|
53 |
+
# Download model from S3 if needed
|
54 |
+
if not self.model_file_path.exists():
|
55 |
+
logger.info("Downloading model from S3...")
|
56 |
+
self.s3.download_file(self.bucket_name, self.model_key, str(self.model_file_path))
|
57 |
+
logger.info("Download complete. Extracting model files...")
|
58 |
+
|
59 |
+
# Extract the model files
|
60 |
+
with tarfile.open(self.model_file_path, "r:gz") as tar:
|
61 |
+
tar.extractall(str(self.model_path))
|
62 |
+
|
63 |
+
# Load the model and tokenizer
|
64 |
+
logger.info("Loading model and tokenizer...")
|
65 |
+
self.tokenizer = AutoTokenizer.from_pretrained(str(self.model_path))
|
66 |
+
self.model = AutoModelForCausalLM.from_pretrained(str(self.model_path))
|
67 |
+
logger.info("Model and tokenizer loaded successfully.")
|
68 |
+
|
69 |
+
# Move model to GPU if available
|
70 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
+
self.model = self.model.to(self.device)
|
72 |
+
logger.info(f'Model loaded on device: {self.device}')
|
73 |
+
|
74 |
+
except PermissionError as e:
|
75 |
+
logger.error(f"Permission error when accessing {self.model_path}: {str(e)}")
|
76 |
+
raise
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"Error in download_and_load_model: {str(e)}")
|
79 |
+
raise
|
80 |
|
81 |
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
|
82 |
try:
|
|
|
115 |
|
116 |
|
117 |
def create_chat_interface():
|
118 |
+
try:
|
119 |
+
# Use a user-accessible directory for the model
|
120 |
+
user_model_path = os.path.join(os.path.expanduser("~"), "customer_support_models")
|
121 |
+
bot = CustomerSupportBot(model_path=user_model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
|
124 |
+
if not message:
|
125 |
+
return "", history
|
126 |
+
|
127 |
+
bot_response = bot.generate_response(message)
|
128 |
+
|
129 |
+
# Log resource usage
|
130 |
+
usage = bot.monitor_resources()
|
131 |
+
print("Resource Usage:", usage)
|
132 |
+
|
133 |
+
history.append((message, bot_response))
|
134 |
+
return "", history
|
135 |
|
136 |
+
# Create the Gradio interface with custom CSS
|
137 |
+
with gr.Blocks(css="""
|
138 |
+
.message-box {
|
139 |
+
margin-bottom: 10px;
|
140 |
+
}
|
141 |
+
.button-row {
|
142 |
+
display: flex;
|
143 |
+
gap: 10px;
|
144 |
+
margin-top: 10px;
|
145 |
+
}
|
146 |
+
""") as interface:
|
147 |
+
gr.Markdown("# Customer Support Chatbot")
|
148 |
+
gr.Markdown("Welcome! How can I assist you today?")
|
149 |
+
|
150 |
+
chatbot = gr.Chatbot(
|
151 |
+
label="Chat History",
|
152 |
+
height=500,
|
153 |
+
elem_classes="message-box",
|
154 |
+
# type="messages"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
)
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
msg = gr.Textbox(
|
159 |
+
label="Your Message",
|
160 |
+
placeholder="Type your message here...",
|
161 |
+
lines=2,
|
162 |
+
elem_classes="message-box"
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row(elem_classes="button-row"):
|
166 |
+
submit = gr.Button("Send Message", variant="primary")
|
167 |
+
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
|
168 |
+
|
169 |
+
# Add example queries in a separate row
|
170 |
+
with gr.Row():
|
171 |
+
gr.Examples(
|
172 |
+
examples=[
|
173 |
+
"How do I reset my password?",
|
174 |
+
"What are your shipping policies?",
|
175 |
+
"I want to return a product.",
|
176 |
+
"How can I track my order?",
|
177 |
+
"What payment methods do you accept?"
|
178 |
+
],
|
179 |
+
inputs=msg,
|
180 |
+
label="Example Questions"
|
181 |
+
)
|
182 |
|
183 |
+
# Set up event handlers
|
184 |
+
submit_click = submit.click(
|
185 |
+
predict,
|
186 |
+
inputs=[msg, chatbot],
|
187 |
+
outputs=[msg, chatbot]
|
188 |
+
)
|
189 |
+
|
190 |
+
msg.submit(
|
191 |
+
predict,
|
192 |
+
inputs=[msg, chatbot],
|
193 |
+
outputs=[msg, chatbot]
|
194 |
+
)
|
195 |
+
|
196 |
+
# Add keyboard shortcut for submit
|
197 |
+
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
|
198 |
|
199 |
+
print("Interface created successfully.")
|
200 |
|
201 |
+
# call the initial query function
|
202 |
+
# run a query first how are you and predict the output
|
203 |
+
print(predict("How are you", []))
|
204 |
|
205 |
+
# run a command which checks the resource usage
|
206 |
+
print(f'Bot Resource Usage : {bot.monitor_resources()}')
|
207 |
|
208 |
+
# show full system usage
|
209 |
+
print(f'CPU Percentage : {psutil.cpu_percent()}')
|
210 |
+
print(f'RAM Usage : {psutil.virtual_memory()}')
|
211 |
+
print(f'Swap Memory : {psutil.swap_memory()}')
|
212 |
|
213 |
+
return interface
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
logger.error(f"Failed to create chat interface: {str(e)}")
|
217 |
+
raise
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
+
try:
|
221 |
+
logger.info("Starting customer support bot application...")
|
222 |
+
demo = create_chat_interface()
|
223 |
+
demo.launch(
|
224 |
+
share=False,
|
225 |
+
server_name="0.0.0.0",
|
226 |
+
server_port=7860,
|
227 |
+
debug=True,
|
228 |
+
inline=False
|
229 |
+
)
|
230 |
+
except Exception as e:
|
231 |
+
logger.error(f"Application failed to start: {str(e)}")
|
232 |
+
raise
|