customer-support-chatbot/ ├── data/ # Data folder for storing datasets │ ├── raw/ # Original, unprocessed datasets │ └── processed/ # Preprocessed datasets ├── models/ # Directory for saving fine-tuned models ├── src/ # Source code directory │ ├── preprocess.py # Data preprocessing scripts │ ├── train.py # Fine-tuning script for the model │ ├── api.py # FastAPI app for real-time chatbot API │ ├── chatbot.py # Core chatbot logic (loading model, handling queries) │ ├── deploy_sagemaker.py # Script for AWS SageMaker deployment │ └── config.py # Configuration file for hyperparameters ├── tests/ # Unit and integration tests │ └── test_api.py # Test script for API responses ├── docker/ # Docker setup for containerized deployment │ ├── Dockerfile # Dockerfile for building the chatbot image │ └── docker-compose.yml # Optional docker-compose setup for local testing ├── mlflow/ # MLflow setup for model tracking │ └── mlflow_config.yml # MLflow configuration file ├── .github/ # GitHub Actions workflows for CI/CD │ └── workflows/ │ └── deployment.yml # CI/CD pipeline for testing, building, and deploying ├── requirements.txt # Python dependencies └── README.md # Documentation