Spaces:
Sleeping
Sleeping
Commit
·
3c0a133
1
Parent(s):
81917a3
score-45, gpt-4.1
Browse files- .gitignore +6 -0
- .python-version +1 -0
- app.py +73 -37
- pyproject.toml +15 -0
- requirements.txt +305 -2
- researchgraph/configuration.py +71 -0
- researchgraph/graph.py +257 -0
- researchgraph/prompts.py +27 -0
- researchgraph/schema.py +10 -0
- researchgraph/state.py +88 -0
- researchgraph/tools.py +94 -0
- researchgraph/utils.py +34 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.lock
|
3 |
+
|
4 |
+
__pycache__/
|
5 |
+
.venv/
|
6 |
+
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
app.py
CHANGED
@@ -1,34 +1,48 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
-
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,13 +52,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent
|
42 |
try:
|
43 |
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
@@ -55,16 +69,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -80,22 +94,41 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append(
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
# 5. Submit
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
@@ -162,20 +195,19 @@ with gr.Blocks() as demo:
|
|
162 |
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
-
status_output = gr.Textbox(
|
|
|
|
|
166 |
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -183,14 +215,18 @@ if __name__ == "__main__":
|
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(
|
|
|
|
|
190 |
else:
|
191 |
-
print(
|
|
|
|
|
192 |
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from researchgraph.graph import researchgraph
|
7 |
|
8 |
# (Keep Constants as is)
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
ENV_FILE = ".env"
|
13 |
+
if os.path.exists(ENV_FILE):
|
14 |
+
load_dotenv(ENV_FILE)
|
15 |
+
|
16 |
+
|
17 |
# --- Basic Agent Definition ---
|
18 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
21 |
print("BasicAgent initialized.")
|
22 |
+
|
23 |
+
async def __call__(self, question: str, task_id: str) -> str:
|
24 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
|
|
25 |
|
26 |
+
research_result = await researchgraph.ainvoke(
|
27 |
+
{"question": question, "task_id": task_id}
|
28 |
+
)
|
29 |
+
result = research_result.get("info", {})
|
30 |
+
answer = result.get("result", "No answer found.")
|
31 |
+
|
32 |
+
print(f"Agent returning answer: {answer}")
|
33 |
+
return answer
|
34 |
+
|
35 |
+
|
36 |
+
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
37 |
"""
|
38 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
39 |
and displays the results.
|
40 |
"""
|
41 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
42 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
43 |
|
44 |
if profile:
|
45 |
+
username = f"{profile.username}"
|
46 |
print(f"User logged in: {username}")
|
47 |
else:
|
48 |
print("User not logged in.")
|
|
|
52 |
questions_url = f"{api_url}/questions"
|
53 |
submit_url = f"{api_url}/submit"
|
54 |
|
55 |
+
# 1. Instantiate Agent
|
56 |
try:
|
57 |
agent = BasicAgent()
|
58 |
except Exception as e:
|
59 |
print(f"Error instantiating agent: {e}")
|
60 |
return f"Error initializing agent: {e}", None
|
61 |
+
|
62 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
print(agent_code)
|
64 |
|
|
|
69 |
response.raise_for_status()
|
70 |
questions_data = response.json()
|
71 |
if not questions_data:
|
72 |
+
print("Fetched questions list is empty.")
|
73 |
+
return "Fetched questions list is empty or invalid format.", None
|
74 |
print(f"Fetched {len(questions_data)} questions.")
|
75 |
except requests.exceptions.RequestException as e:
|
76 |
print(f"Error fetching questions: {e}")
|
77 |
return f"Error fetching questions: {e}", None
|
78 |
except requests.exceptions.JSONDecodeError as e:
|
79 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
80 |
+
print(f"Response text: {response.text[:500]}")
|
81 |
+
return f"Error decoding server response for questions: {e}", None
|
82 |
except Exception as e:
|
83 |
print(f"An unexpected error occurred fetching questions: {e}")
|
84 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
94 |
print(f"Skipping item with missing task_id or question: {item}")
|
95 |
continue
|
96 |
try:
|
97 |
+
submitted_answer = await agent(question_text, task_id)
|
98 |
+
answers_payload.append(
|
99 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
100 |
+
)
|
101 |
+
results_log.append(
|
102 |
+
{
|
103 |
+
"Task ID": task_id,
|
104 |
+
"Question": question_text,
|
105 |
+
"Submitted Answer": submitted_answer,
|
106 |
+
}
|
107 |
+
)
|
108 |
except Exception as e:
|
109 |
+
print(f"Error running agent on task {task_id}: {e}")
|
110 |
+
results_log.append(
|
111 |
+
{
|
112 |
+
"Task ID": task_id,
|
113 |
+
"Question": question_text,
|
114 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
115 |
+
}
|
116 |
+
)
|
117 |
+
|
118 |
+
# ... rest of function remains the same ...
|
119 |
+
# 4. Prepare Submission
|
120 |
+
submission_data = {
|
121 |
+
"username": username.strip(),
|
122 |
+
"agent_code": agent_code,
|
123 |
+
"answers": answers_payload,
|
124 |
+
}
|
125 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
126 |
+
print(status_update)
|
127 |
|
128 |
if not answers_payload:
|
129 |
print("Agent did not produce any answers to submit.")
|
130 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
131 |
|
|
|
|
|
|
|
|
|
|
|
132 |
# 5. Submit
|
133 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
134 |
try:
|
|
|
195 |
|
196 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
197 |
|
198 |
+
status_output = gr.Textbox(
|
199 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
200 |
+
)
|
201 |
# Removed max_rows=10 from DataFrame constructor
|
202 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
203 |
|
204 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
205 |
|
206 |
if __name__ == "__main__":
|
207 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
208 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
209 |
space_host_startup = os.getenv("SPACE_HOST")
|
210 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
211 |
|
212 |
if space_host_startup:
|
213 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
215 |
else:
|
216 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
217 |
|
218 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
219 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
220 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
221 |
+
print(
|
222 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
223 |
+
)
|
224 |
else:
|
225 |
+
print(
|
226 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
227 |
+
)
|
228 |
|
229 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
230 |
|
231 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
232 |
+
demo.queue().launch(debug=True, share=False) # Added queue() for async support
|
pyproject.toml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "agent-course-final-assesment"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"aiohttp>=3.11.18",
|
9 |
+
"gradio[oauth]>=5.26.0",
|
10 |
+
"langchain>=0.3.24",
|
11 |
+
"langchain-community>=0.3.22",
|
12 |
+
"langchain-core>=0.3.55",
|
13 |
+
"langchain-openai>=0.3.14",
|
14 |
+
"langgraph>=0.3.34",
|
15 |
+
]
|
requirements.txt
CHANGED
@@ -1,2 +1,305 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file was autogenerated by uv via the following command:
|
2 |
+
# uv pip compile pyproject.toml --output-file requirements.txt
|
3 |
+
aiofiles==24.1.0
|
4 |
+
# via gradio
|
5 |
+
aiohappyeyeballs==2.6.1
|
6 |
+
# via aiohttp
|
7 |
+
aiohttp==3.11.18
|
8 |
+
# via
|
9 |
+
# agent-course-final-assesment (pyproject.toml)
|
10 |
+
# langchain-community
|
11 |
+
aiosignal==1.3.2
|
12 |
+
# via aiohttp
|
13 |
+
annotated-types==0.7.0
|
14 |
+
# via pydantic
|
15 |
+
anyio==4.9.0
|
16 |
+
# via
|
17 |
+
# gradio
|
18 |
+
# httpx
|
19 |
+
# openai
|
20 |
+
# starlette
|
21 |
+
attrs==25.3.0
|
22 |
+
# via aiohttp
|
23 |
+
authlib==1.5.2
|
24 |
+
# via gradio
|
25 |
+
certifi==2025.1.31
|
26 |
+
# via
|
27 |
+
# httpcore
|
28 |
+
# httpx
|
29 |
+
# requests
|
30 |
+
cffi==1.17.1
|
31 |
+
# via cryptography
|
32 |
+
charset-normalizer==3.4.1
|
33 |
+
# via requests
|
34 |
+
click==8.1.8
|
35 |
+
# via
|
36 |
+
# typer
|
37 |
+
# uvicorn
|
38 |
+
colorama==0.4.6
|
39 |
+
# via
|
40 |
+
# click
|
41 |
+
# tqdm
|
42 |
+
cryptography==44.0.2
|
43 |
+
# via authlib
|
44 |
+
dataclasses-json==0.6.7
|
45 |
+
# via langchain-community
|
46 |
+
distro==1.9.0
|
47 |
+
# via openai
|
48 |
+
fastapi==0.115.12
|
49 |
+
# via gradio
|
50 |
+
ffmpy==0.5.0
|
51 |
+
# via gradio
|
52 |
+
filelock==3.18.0
|
53 |
+
# via huggingface-hub
|
54 |
+
frozenlist==1.6.0
|
55 |
+
# via
|
56 |
+
# aiohttp
|
57 |
+
# aiosignal
|
58 |
+
fsspec==2025.3.2
|
59 |
+
# via
|
60 |
+
# gradio-client
|
61 |
+
# huggingface-hub
|
62 |
+
gradio==5.26.0
|
63 |
+
# via agent-course-final-assesment (pyproject.toml)
|
64 |
+
gradio-client==1.9.0
|
65 |
+
# via gradio
|
66 |
+
greenlet==3.2.1
|
67 |
+
# via sqlalchemy
|
68 |
+
groovy==0.1.2
|
69 |
+
# via gradio
|
70 |
+
h11==0.14.0
|
71 |
+
# via
|
72 |
+
# httpcore
|
73 |
+
# uvicorn
|
74 |
+
httpcore==1.0.8
|
75 |
+
# via httpx
|
76 |
+
httpx==0.28.1
|
77 |
+
# via
|
78 |
+
# gradio
|
79 |
+
# gradio-client
|
80 |
+
# langgraph-sdk
|
81 |
+
# langsmith
|
82 |
+
# openai
|
83 |
+
# safehttpx
|
84 |
+
httpx-sse==0.4.0
|
85 |
+
# via langchain-community
|
86 |
+
huggingface-hub==0.30.2
|
87 |
+
# via
|
88 |
+
# gradio
|
89 |
+
# gradio-client
|
90 |
+
idna==3.10
|
91 |
+
# via
|
92 |
+
# anyio
|
93 |
+
# httpx
|
94 |
+
# requests
|
95 |
+
# yarl
|
96 |
+
itsdangerous==2.2.0
|
97 |
+
# via gradio
|
98 |
+
jinja2==3.1.6
|
99 |
+
# via gradio
|
100 |
+
jiter==0.9.0
|
101 |
+
# via openai
|
102 |
+
jsonpatch==1.33
|
103 |
+
# via langchain-core
|
104 |
+
jsonpointer==3.0.0
|
105 |
+
# via jsonpatch
|
106 |
+
langchain==0.3.24
|
107 |
+
# via
|
108 |
+
# agent-course-final-assesment (pyproject.toml)
|
109 |
+
# langchain-community
|
110 |
+
langchain-community==0.3.22
|
111 |
+
# via agent-course-final-assesment (pyproject.toml)
|
112 |
+
langchain-core==0.3.56
|
113 |
+
# via
|
114 |
+
# agent-course-final-assesment (pyproject.toml)
|
115 |
+
# langchain
|
116 |
+
# langchain-community
|
117 |
+
# langchain-openai
|
118 |
+
# langchain-text-splitters
|
119 |
+
# langgraph
|
120 |
+
# langgraph-checkpoint
|
121 |
+
# langgraph-prebuilt
|
122 |
+
langchain-openai==0.3.14
|
123 |
+
# via agent-course-final-assesment (pyproject.toml)
|
124 |
+
langchain-text-splitters==0.3.8
|
125 |
+
# via langchain
|
126 |
+
langgraph==0.3.34
|
127 |
+
# via agent-course-final-assesment (pyproject.toml)
|
128 |
+
langgraph-checkpoint==2.0.24
|
129 |
+
# via
|
130 |
+
# langgraph
|
131 |
+
# langgraph-prebuilt
|
132 |
+
langgraph-prebuilt==0.1.8
|
133 |
+
# via langgraph
|
134 |
+
langgraph-sdk==0.1.63
|
135 |
+
# via langgraph
|
136 |
+
langsmith==0.3.33
|
137 |
+
# via
|
138 |
+
# langchain
|
139 |
+
# langchain-community
|
140 |
+
# langchain-core
|
141 |
+
markdown-it-py==3.0.0
|
142 |
+
# via rich
|
143 |
+
markupsafe==3.0.2
|
144 |
+
# via
|
145 |
+
# gradio
|
146 |
+
# jinja2
|
147 |
+
marshmallow==3.26.1
|
148 |
+
# via dataclasses-json
|
149 |
+
mdurl==0.1.2
|
150 |
+
# via markdown-it-py
|
151 |
+
multidict==6.4.3
|
152 |
+
# via
|
153 |
+
# aiohttp
|
154 |
+
# yarl
|
155 |
+
mypy-extensions==1.1.0
|
156 |
+
# via typing-inspect
|
157 |
+
numpy==2.2.5
|
158 |
+
# via
|
159 |
+
# gradio
|
160 |
+
# langchain-community
|
161 |
+
# pandas
|
162 |
+
openai==1.76.0
|
163 |
+
# via langchain-openai
|
164 |
+
orjson==3.10.16
|
165 |
+
# via
|
166 |
+
# gradio
|
167 |
+
# langgraph-sdk
|
168 |
+
# langsmith
|
169 |
+
ormsgpack==1.9.1
|
170 |
+
# via langgraph-checkpoint
|
171 |
+
packaging==24.2
|
172 |
+
# via
|
173 |
+
# gradio
|
174 |
+
# gradio-client
|
175 |
+
# huggingface-hub
|
176 |
+
# langchain-core
|
177 |
+
# langsmith
|
178 |
+
# marshmallow
|
179 |
+
pandas==2.2.3
|
180 |
+
# via gradio
|
181 |
+
pillow==11.2.1
|
182 |
+
# via gradio
|
183 |
+
propcache==0.3.1
|
184 |
+
# via
|
185 |
+
# aiohttp
|
186 |
+
# yarl
|
187 |
+
pycparser==2.22
|
188 |
+
# via cffi
|
189 |
+
pydantic==2.11.3
|
190 |
+
# via
|
191 |
+
# fastapi
|
192 |
+
# gradio
|
193 |
+
# langchain
|
194 |
+
# langchain-core
|
195 |
+
# langsmith
|
196 |
+
# openai
|
197 |
+
# pydantic-settings
|
198 |
+
pydantic-core==2.33.1
|
199 |
+
# via pydantic
|
200 |
+
pydantic-settings==2.9.1
|
201 |
+
# via langchain-community
|
202 |
+
pydub==0.25.1
|
203 |
+
# via gradio
|
204 |
+
pygments==2.19.1
|
205 |
+
# via rich
|
206 |
+
python-dateutil==2.9.0.post0
|
207 |
+
# via pandas
|
208 |
+
python-dotenv==1.1.0
|
209 |
+
# via pydantic-settings
|
210 |
+
python-multipart==0.0.20
|
211 |
+
# via gradio
|
212 |
+
pytz==2025.2
|
213 |
+
# via pandas
|
214 |
+
pyyaml==6.0.2
|
215 |
+
# via
|
216 |
+
# gradio
|
217 |
+
# huggingface-hub
|
218 |
+
# langchain
|
219 |
+
# langchain-community
|
220 |
+
# langchain-core
|
221 |
+
regex==2024.11.6
|
222 |
+
# via tiktoken
|
223 |
+
requests==2.32.3
|
224 |
+
# via
|
225 |
+
# huggingface-hub
|
226 |
+
# langchain
|
227 |
+
# langchain-community
|
228 |
+
# langsmith
|
229 |
+
# requests-toolbelt
|
230 |
+
# tiktoken
|
231 |
+
requests-toolbelt==1.0.0
|
232 |
+
# via langsmith
|
233 |
+
rich==14.0.0
|
234 |
+
# via typer
|
235 |
+
ruff==0.11.7
|
236 |
+
# via gradio
|
237 |
+
safehttpx==0.1.6
|
238 |
+
# via gradio
|
239 |
+
semantic-version==2.10.0
|
240 |
+
# via gradio
|
241 |
+
shellingham==1.5.4
|
242 |
+
# via typer
|
243 |
+
six==1.17.0
|
244 |
+
# via python-dateutil
|
245 |
+
sniffio==1.3.1
|
246 |
+
# via
|
247 |
+
# anyio
|
248 |
+
# openai
|
249 |
+
sqlalchemy==2.0.40
|
250 |
+
# via
|
251 |
+
# langchain
|
252 |
+
# langchain-community
|
253 |
+
starlette==0.46.2
|
254 |
+
# via
|
255 |
+
# fastapi
|
256 |
+
# gradio
|
257 |
+
tenacity==9.1.2
|
258 |
+
# via
|
259 |
+
# langchain-community
|
260 |
+
# langchain-core
|
261 |
+
tiktoken==0.9.0
|
262 |
+
# via langchain-openai
|
263 |
+
tomlkit==0.13.2
|
264 |
+
# via gradio
|
265 |
+
tqdm==4.67.1
|
266 |
+
# via
|
267 |
+
# huggingface-hub
|
268 |
+
# openai
|
269 |
+
typer==0.15.2
|
270 |
+
# via gradio
|
271 |
+
typing-extensions==4.13.2
|
272 |
+
# via
|
273 |
+
# anyio
|
274 |
+
# fastapi
|
275 |
+
# gradio
|
276 |
+
# gradio-client
|
277 |
+
# huggingface-hub
|
278 |
+
# langchain-core
|
279 |
+
# openai
|
280 |
+
# pydantic
|
281 |
+
# pydantic-core
|
282 |
+
# sqlalchemy
|
283 |
+
# typer
|
284 |
+
# typing-inspect
|
285 |
+
# typing-inspection
|
286 |
+
typing-inspect==0.9.0
|
287 |
+
# via dataclasses-json
|
288 |
+
typing-inspection==0.4.0
|
289 |
+
# via
|
290 |
+
# pydantic
|
291 |
+
# pydantic-settings
|
292 |
+
tzdata==2025.2
|
293 |
+
# via pandas
|
294 |
+
urllib3==2.4.0
|
295 |
+
# via requests
|
296 |
+
uvicorn==0.34.2
|
297 |
+
# via gradio
|
298 |
+
websockets==15.0.1
|
299 |
+
# via gradio-client
|
300 |
+
xxhash==3.5.0
|
301 |
+
# via langgraph
|
302 |
+
yarl==1.20.0
|
303 |
+
# via aiohttp
|
304 |
+
zstandard==0.23.0
|
305 |
+
# via langsmith
|
researchgraph/configuration.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Define the configurable parameters for the agent."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from dataclasses import dataclass, field, fields
|
6 |
+
from typing import Annotated, Optional
|
7 |
+
|
8 |
+
from langchain_core.runnables import RunnableConfig, ensure_config
|
9 |
+
|
10 |
+
from researchgraph import prompts
|
11 |
+
from researchgraph import schema
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass(kw_only=True)
|
15 |
+
class Configuration:
|
16 |
+
"""The configuration for the agent."""
|
17 |
+
|
18 |
+
model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
|
19 |
+
default="openai/gpt-4.1",
|
20 |
+
metadata={
|
21 |
+
"description": "The name of the language model to use for the agent. "
|
22 |
+
"Should be in the form: provider/model-name."
|
23 |
+
},
|
24 |
+
)
|
25 |
+
|
26 |
+
prompt: str = field(
|
27 |
+
default=prompts.MAIN_PROMPT,
|
28 |
+
metadata={
|
29 |
+
"description": "The main prompt template to use for the agent's interactions. "
|
30 |
+
"Expects two f-string arguments: {info} and {question}."
|
31 |
+
},
|
32 |
+
)
|
33 |
+
|
34 |
+
extraction_schema: dict = field(
|
35 |
+
default_factory=lambda: schema.extraction_schema,
|
36 |
+
metadata={
|
37 |
+
"description": "The schema to use for extracting information from the agent's responses. "
|
38 |
+
"Should be a valid JSON schema."
|
39 |
+
},
|
40 |
+
)
|
41 |
+
|
42 |
+
max_search_results: int = field(
|
43 |
+
default=25,
|
44 |
+
metadata={
|
45 |
+
"description": "The maximum number of search results to return for each search query."
|
46 |
+
},
|
47 |
+
)
|
48 |
+
|
49 |
+
max_info_tool_calls: int = field(
|
50 |
+
default=25,
|
51 |
+
metadata={
|
52 |
+
"description": "The maximum number of times the Info tool can be called during a single interaction."
|
53 |
+
},
|
54 |
+
)
|
55 |
+
|
56 |
+
max_loops: int = field(
|
57 |
+
default=25,
|
58 |
+
metadata={
|
59 |
+
"description": "The maximum number of interaction loops allowed before the agent terminates."
|
60 |
+
},
|
61 |
+
)
|
62 |
+
|
63 |
+
@classmethod
|
64 |
+
def from_runnable_config(
|
65 |
+
cls, config: Optional[RunnableConfig] = None
|
66 |
+
) -> Configuration:
|
67 |
+
"""Load configuration w/ defaults for the given invocation."""
|
68 |
+
config = ensure_config(config)
|
69 |
+
configurable = config.get("configurable") or {}
|
70 |
+
_fields = {f.name for f in fields(cls) if f.init}
|
71 |
+
return cls(**{k: v for k, v in configurable.items() if k in _fields})
|
researchgraph/graph.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Define a data enrichment agent.
|
2 |
+
|
3 |
+
Works with a chat model with tool calling support.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import json
|
7 |
+
from typing import Any, Dict, List, Literal, Optional, cast
|
8 |
+
|
9 |
+
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage
|
10 |
+
from langchain_core.runnables import RunnableConfig
|
11 |
+
from langgraph.graph import StateGraph
|
12 |
+
from langgraph.prebuilt import ToolNode
|
13 |
+
from pydantic import BaseModel, Field
|
14 |
+
|
15 |
+
from researchgraph import prompts
|
16 |
+
from researchgraph.configuration import Configuration
|
17 |
+
from researchgraph.state import InputState, OutputState, State
|
18 |
+
from researchgraph.tools import scrape_website, search, get_file_content
|
19 |
+
from researchgraph.utils import init_model
|
20 |
+
|
21 |
+
|
22 |
+
async def call_agent_model(
|
23 |
+
state: State, *, config: Optional[RunnableConfig] = None
|
24 |
+
) -> Dict[str, Any]:
|
25 |
+
"""Call the primary Language Model (LLM) to decide on the next research action.
|
26 |
+
|
27 |
+
This asynchronous function performs the following steps:
|
28 |
+
1. Initializes configuration and sets up the 'Info' tool, which is the user-defined extraction schema.
|
29 |
+
2. Prepares the prompt and message history for the LLM.
|
30 |
+
3. Initializes and configures the LLM with available tools.
|
31 |
+
4. Invokes the LLM and processes its response.
|
32 |
+
5. Handles the LLM's decision to either continue research or submit final info.
|
33 |
+
"""
|
34 |
+
# Load configuration from the provided RunnableConfig
|
35 |
+
configuration = Configuration.from_runnable_config(config)
|
36 |
+
|
37 |
+
# Define the 'Info' tool, which is the user-defined extraction schema
|
38 |
+
info_tool = {
|
39 |
+
"name": "Info",
|
40 |
+
"description": "Call this when you have gathered all the relevant info",
|
41 |
+
"parameters": configuration.extraction_schema,
|
42 |
+
}
|
43 |
+
|
44 |
+
# Define the GetFile tool
|
45 |
+
get_file_tool = {
|
46 |
+
"name": "GetFile",
|
47 |
+
"description": "Fetch content from the scoring system for a given task ID",
|
48 |
+
"parameters": {
|
49 |
+
"type": "object",
|
50 |
+
"properties": {
|
51 |
+
"task_id": {
|
52 |
+
"type": "string",
|
53 |
+
"description": "The ID of the task/file to fetch",
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"required": ["task_id"],
|
57 |
+
},
|
58 |
+
}
|
59 |
+
|
60 |
+
# Format the prompt defined in prompts.py with the extraction schema, question and task_id
|
61 |
+
p = configuration.prompt.format(
|
62 |
+
info=json.dumps(configuration.extraction_schema, indent=2),
|
63 |
+
question=state.question,
|
64 |
+
task_id=state.task_id,
|
65 |
+
)
|
66 |
+
|
67 |
+
# Create the messages list with the formatted prompt and the previous messages
|
68 |
+
messages = [HumanMessage(content=p)] + state.messages
|
69 |
+
|
70 |
+
# Initialize the raw model with the provided configuration and bind the tools
|
71 |
+
raw_model = init_model(config)
|
72 |
+
model = raw_model.bind_tools(
|
73 |
+
[scrape_website, search, get_file_content, info_tool, get_file_tool],
|
74 |
+
tool_choice="any",
|
75 |
+
)
|
76 |
+
response = cast(AIMessage, await model.ainvoke(messages))
|
77 |
+
|
78 |
+
# Initialize info to None
|
79 |
+
info = None
|
80 |
+
|
81 |
+
# Check if the response has tool calls
|
82 |
+
if response.tool_calls:
|
83 |
+
for tool_call in response.tool_calls:
|
84 |
+
if tool_call["name"] == "Info":
|
85 |
+
info = tool_call["args"]
|
86 |
+
break
|
87 |
+
if info is not None:
|
88 |
+
# The agent is submitting their answer;
|
89 |
+
# ensure it isn't erroneously attempting to simultaneously perform research
|
90 |
+
response.tool_calls = [
|
91 |
+
next(tc for tc in response.tool_calls if tc["name"] == "Info")
|
92 |
+
]
|
93 |
+
response_messages: List[BaseMessage] = [response]
|
94 |
+
if not response.tool_calls: # If LLM didn't respect the tool_choice
|
95 |
+
response_messages.append(
|
96 |
+
HumanMessage(content="Please respond by calling one of the provided tools.")
|
97 |
+
)
|
98 |
+
return {
|
99 |
+
"messages": response_messages,
|
100 |
+
"info": info,
|
101 |
+
# Add 1 to the step count
|
102 |
+
"loop_step": 1,
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
class InfoIsSatisfactory(BaseModel):
|
107 |
+
"""Validate whether the current extracted info is satisfactory and complete."""
|
108 |
+
|
109 |
+
reason: List[str] = Field(
|
110 |
+
description="First, provide reasoning for why this is either good or bad as a final result. Must include at least 3 reasons."
|
111 |
+
)
|
112 |
+
is_satisfactory: bool = Field(
|
113 |
+
description="After providing your reasoning, provide a value indicating whether the result is satisfactory. If not, you will continue researching."
|
114 |
+
)
|
115 |
+
improvement_instructions: Optional[str] = Field(
|
116 |
+
description="If the result is not satisfactory, provide clear and specific instructions on what needs to be improved or added to make the information satisfactory."
|
117 |
+
" This should include details on missing information, areas that need more depth, or specific aspects to focus on in further research.",
|
118 |
+
default=None,
|
119 |
+
)
|
120 |
+
|
121 |
+
|
122 |
+
async def reflect(
|
123 |
+
state: State, *, config: Optional[RunnableConfig] = None
|
124 |
+
) -> Dict[str, Any]:
|
125 |
+
"""Validate the quality of the data enrichment agent's output.
|
126 |
+
|
127 |
+
This asynchronous function performs the following steps:
|
128 |
+
1. Prepares the initial prompt using the main prompt template.
|
129 |
+
2. Constructs a message history for the model.
|
130 |
+
3. Prepares a checker prompt to evaluate the presumed info.
|
131 |
+
4. Initializes and configures a language model with structured output.
|
132 |
+
5. Invokes the model to assess the quality of the gathered information.
|
133 |
+
6. Processes the model's response and determines if the info is satisfactory.
|
134 |
+
"""
|
135 |
+
|
136 |
+
configuration = Configuration.from_runnable_config(config)
|
137 |
+
|
138 |
+
p = prompts.MAIN_PROMPT.format(
|
139 |
+
info=json.dumps(configuration.extraction_schema, indent=2),
|
140 |
+
question=state.question,
|
141 |
+
task_id=state.task_id,
|
142 |
+
)
|
143 |
+
last_message = state.messages[-1]
|
144 |
+
if not isinstance(last_message, AIMessage):
|
145 |
+
raise ValueError(
|
146 |
+
f"{reflect.__name__} expects the last message in the state to be an AI message with tool calls."
|
147 |
+
f" Got: {type(last_message)}"
|
148 |
+
)
|
149 |
+
messages = [HumanMessage(content=p)] + state.messages[:-1]
|
150 |
+
presumed_info = state.info
|
151 |
+
checker_prompt = """I am thinking of calling the info tool with the info below. \
|
152 |
+
Is this good? Give your reasoning as well. \
|
153 |
+
You can encourage the Assistant to look at specific URLs if that seems relevant, or do more searches.
|
154 |
+
If you don't think it is good, you should be very specific about what could be improved.
|
155 |
+
|
156 |
+
{presumed_info}"""
|
157 |
+
p1 = checker_prompt.format(presumed_info=json.dumps(presumed_info or {}, indent=2))
|
158 |
+
messages.append(HumanMessage(content=p1))
|
159 |
+
raw_model = init_model(config)
|
160 |
+
bound_model = raw_model.with_structured_output(InfoIsSatisfactory)
|
161 |
+
response = cast(InfoIsSatisfactory, await bound_model.ainvoke(messages))
|
162 |
+
if response.is_satisfactory and presumed_info:
|
163 |
+
return {
|
164 |
+
"info": presumed_info,
|
165 |
+
"messages": [
|
166 |
+
ToolMessage(
|
167 |
+
tool_call_id=last_message.tool_calls[0]["id"],
|
168 |
+
content="\n".join(response.reason),
|
169 |
+
name="Info",
|
170 |
+
additional_kwargs={"artifact": response.model_dump()},
|
171 |
+
status="success",
|
172 |
+
)
|
173 |
+
],
|
174 |
+
}
|
175 |
+
else:
|
176 |
+
return {
|
177 |
+
"messages": [
|
178 |
+
ToolMessage(
|
179 |
+
tool_call_id=last_message.tool_calls[0]["id"],
|
180 |
+
content=f"Unsatisfactory response:\n{response.improvement_instructions}",
|
181 |
+
name="Info",
|
182 |
+
additional_kwargs={"artifact": response.model_dump()},
|
183 |
+
status="error",
|
184 |
+
)
|
185 |
+
]
|
186 |
+
}
|
187 |
+
|
188 |
+
|
189 |
+
def route_after_agent(
|
190 |
+
state: State,
|
191 |
+
) -> Literal["reflect", "tools", "call_agent_model", "__end__"]:
|
192 |
+
"""Schedule the next node after the agent's action.
|
193 |
+
|
194 |
+
This function determines the next step in the research process based on the
|
195 |
+
last message in the state. It handles three main scenarios:
|
196 |
+
|
197 |
+
1. Error recovery: If the last message is unexpectedly not an AIMessage.
|
198 |
+
2. Info submission: If the agent has called the "Info" tool to submit findings.
|
199 |
+
3. Continued research: If the agent has called any other tool.
|
200 |
+
"""
|
201 |
+
last_message = state.messages[-1]
|
202 |
+
|
203 |
+
# "If for some reason the last message is not an AIMessage (due to a bug or unexpected behavior elsewhere in the code),
|
204 |
+
# it ensures the system doesn't crash but instead tries to recover by calling the agent model again.
|
205 |
+
if not isinstance(last_message, AIMessage):
|
206 |
+
return "call_agent_model"
|
207 |
+
# If the "Info" tool was called, then the model provided its extraction output. Reflect on the result
|
208 |
+
if last_message.tool_calls and last_message.tool_calls[0]["name"] == "Info":
|
209 |
+
return "reflect"
|
210 |
+
# The last message is a tool call that is not "Info" (extraction output)
|
211 |
+
else:
|
212 |
+
return "tools"
|
213 |
+
|
214 |
+
|
215 |
+
def route_after_checker(
|
216 |
+
state: State, config: RunnableConfig
|
217 |
+
) -> Literal["__end__", "call_agent_model"]:
|
218 |
+
"""Schedule the next node after the checker's evaluation.
|
219 |
+
|
220 |
+
This function determines whether to continue the research process or end it
|
221 |
+
based on the checker's evaluation and the current state of the research.
|
222 |
+
"""
|
223 |
+
configurable = Configuration.from_runnable_config(config)
|
224 |
+
last_message = state.messages[-1]
|
225 |
+
|
226 |
+
if state.loop_step < configurable.max_loops:
|
227 |
+
if not state.info:
|
228 |
+
return "call_agent_model"
|
229 |
+
if not isinstance(last_message, ToolMessage):
|
230 |
+
raise ValueError(
|
231 |
+
f"{route_after_checker.__name__} expected a tool messages. Received: {type(last_message)}."
|
232 |
+
)
|
233 |
+
if last_message.status == "error":
|
234 |
+
# Research deemed unsatisfactory
|
235 |
+
return "call_agent_model"
|
236 |
+
# It's great!
|
237 |
+
return "__end__"
|
238 |
+
else:
|
239 |
+
return "__end__"
|
240 |
+
|
241 |
+
|
242 |
+
# Create the researcher graph
|
243 |
+
researcher_workflow = StateGraph(
|
244 |
+
State, input=InputState, output=OutputState, config_schema=Configuration
|
245 |
+
)
|
246 |
+
researcher_workflow.add_node(call_agent_model)
|
247 |
+
researcher_workflow.add_node(reflect)
|
248 |
+
researcher_workflow.add_node(
|
249 |
+
"tools", ToolNode([search, scrape_website, get_file_content])
|
250 |
+
)
|
251 |
+
researcher_workflow.add_edge("__start__", "call_agent_model")
|
252 |
+
researcher_workflow.add_conditional_edges("call_agent_model", route_after_agent)
|
253 |
+
researcher_workflow.add_edge("tools", "call_agent_model")
|
254 |
+
researcher_workflow.add_conditional_edges("reflect", route_after_checker)
|
255 |
+
|
256 |
+
researchgraph = researcher_workflow.compile()
|
257 |
+
researchgraph.name = "Agent"
|
researchgraph/prompts.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Default prompts used in this project."""
|
2 |
+
|
3 |
+
MAIN_PROMPT = """You are a general AI assistant. I will ask you a question.
|
4 |
+
Report your thoughts, and finish your answer with the following template:
|
5 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
6 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
7 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
8 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
9 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
10 |
+
|
11 |
+
<info>
|
12 |
+
{info}
|
13 |
+
</info>
|
14 |
+
|
15 |
+
You have access to the following tools:
|
16 |
+
|
17 |
+
- `Search`: call this tool to find relevant web sources.
|
18 |
+
- `ScrapeWebsite`: use this to extract detailed insights from specific web pages. This will update your notes.
|
19 |
+
- `GetFile`: use this to fetch specific task file content. You can access the file using the task ID: {task_id}
|
20 |
+
- `Info`: call this when you have collected and structured all the necessary information.
|
21 |
+
|
22 |
+
Here is the question you need to uncover:
|
23 |
+
|
24 |
+
question: {question}
|
25 |
+
|
26 |
+
Be thorough, organize your findings according to the above structure, and validate for accuracy and completeness.
|
27 |
+
"""
|
researchgraph/schema.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
extraction_schema = {
|
2 |
+
"type": "object",
|
3 |
+
"properties": {
|
4 |
+
"result": {
|
5 |
+
"type": "string",
|
6 |
+
"description": "The answer to the question"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"required": ["result"]
|
10 |
+
}
|
researchgraph/state.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""State definitions.
|
2 |
+
|
3 |
+
State is the interface between the graph and end user as well as the
|
4 |
+
data model used internally by the graph.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import operator
|
8 |
+
from dataclasses import dataclass, field
|
9 |
+
from typing import Annotated, Any, List, Optional
|
10 |
+
|
11 |
+
from langchain_core.messages import BaseMessage
|
12 |
+
from langgraph.graph import add_messages
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass(kw_only=True)
|
16 |
+
class InputState:
|
17 |
+
"""Input state defines the interface between the graph and the user (external API)."""
|
18 |
+
|
19 |
+
question: str
|
20 |
+
"The question for which the agent is tasked to gather information."
|
21 |
+
|
22 |
+
task_id: str
|
23 |
+
"The ID of the task being processed"
|
24 |
+
|
25 |
+
info: Optional[dict[str, Any]] = field(default=None)
|
26 |
+
"The info state tracks the current extracted data for the given question, conforming to the provided schema. This is primarily populated by the agent."
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass(kw_only=True)
|
30 |
+
class State(InputState):
|
31 |
+
"""A graph's State defines three main things.
|
32 |
+
|
33 |
+
1. The structure of the data to be passed between nodes (which "channels" to read from/write to and their types)
|
34 |
+
2. Default values for each field
|
35 |
+
3. Reducers for the state's fields. Reducers are functions that determine how to apply updates to the state.
|
36 |
+
See [Reducers](https://langchain-ai.github.io/langgraph/concepts/low_level/#reducers) for more information.
|
37 |
+
"""
|
38 |
+
|
39 |
+
messages: Annotated[List[BaseMessage], add_messages] = field(default_factory=list)
|
40 |
+
"""
|
41 |
+
Messages track the primary execution state of the agent.
|
42 |
+
|
43 |
+
Typically accumulates a pattern of:
|
44 |
+
|
45 |
+
1. HumanMessage - user input
|
46 |
+
2. AIMessage with .tool_calls - agent picking tool(s) to use to collect
|
47 |
+
information
|
48 |
+
3. ToolMessage(s) - the responses (or errors) from the executed tools
|
49 |
+
|
50 |
+
(... repeat steps 2 and 3 as needed ...)
|
51 |
+
4. AIMessage without .tool_calls - agent responding in unstructured
|
52 |
+
format to the user.
|
53 |
+
|
54 |
+
5. HumanMessage - user responds with the next conversational turn.
|
55 |
+
|
56 |
+
(... repeat steps 2-5 as needed ... )
|
57 |
+
|
58 |
+
Merges two lists of messages, updating existing messages by ID.
|
59 |
+
|
60 |
+
By default, this ensures the state is "append-only", unless the
|
61 |
+
new message has the same ID as an existing message.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
A new list of messages with the messages from `right` merged into `left`.
|
65 |
+
If a message in `right` has the same ID as a message in `left`, the
|
66 |
+
message from `right` will replace the message from `left`.
|
67 |
+
"""
|
68 |
+
|
69 |
+
loop_step: Annotated[int, operator.add] = field(default=0)
|
70 |
+
|
71 |
+
# Feel free to add additional attributes to your state as needed.
|
72 |
+
# Common examples include retrieved documents, extracted entities, API connections, etc.
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass(kw_only=True)
|
76 |
+
class OutputState:
|
77 |
+
"""The response object for the end user.
|
78 |
+
|
79 |
+
This class defines the structure of the output that will be provided
|
80 |
+
to the user after the graph's execution is complete.
|
81 |
+
"""
|
82 |
+
|
83 |
+
info: dict[str, Any]
|
84 |
+
"""
|
85 |
+
A dictionary containing the extracted and processed information
|
86 |
+
based on the user's query and the graph's execution.
|
87 |
+
This is the primary output of the enrichment process.
|
88 |
+
"""
|
researchgraph/tools.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for data enrichment.
|
2 |
+
|
3 |
+
This module contains functions that are directly exposed to the LLM as tools.
|
4 |
+
These tools can be used for tasks such as web searching and scraping.
|
5 |
+
Users can edit and extend these tools as needed.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import json
|
9 |
+
from typing import Any, Optional, cast
|
10 |
+
|
11 |
+
import aiohttp
|
12 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
13 |
+
from langchain_core.runnables import RunnableConfig
|
14 |
+
from langchain_core.tools import InjectedToolArg
|
15 |
+
from langgraph.prebuilt import InjectedState
|
16 |
+
from typing_extensions import Annotated
|
17 |
+
|
18 |
+
from researchgraph.configuration import Configuration
|
19 |
+
from researchgraph.state import State
|
20 |
+
from researchgraph.utils import init_model
|
21 |
+
|
22 |
+
|
23 |
+
async def get_file_content(
|
24 |
+
task_id: str, *, config: Annotated[RunnableConfig, InjectedToolArg]
|
25 |
+
) -> Optional[str]:
|
26 |
+
"""Fetch and process a file from the scoring system.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
task_id: The ID of the task/file to fetch.
|
30 |
+
config: Runtime configuration.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Optional[str]: The content of the file if successful, None otherwise.
|
34 |
+
"""
|
35 |
+
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
36 |
+
async with aiohttp.ClientSession() as session:
|
37 |
+
async with session.get(url) as response:
|
38 |
+
if response.status == 200:
|
39 |
+
return await response.text()
|
40 |
+
return None
|
41 |
+
|
42 |
+
|
43 |
+
async def search(
|
44 |
+
query: str, *, config: Annotated[RunnableConfig, InjectedToolArg]
|
45 |
+
) -> Optional[list[dict[str, Any]]]:
|
46 |
+
"""Query a search engine.
|
47 |
+
|
48 |
+
This function queries the web to fetch comprehensive, accurate, and trusted results. It's particularly useful
|
49 |
+
for answering questions about current events. Provide as much context in the query as needed to ensure high recall.
|
50 |
+
"""
|
51 |
+
configuration = Configuration.from_runnable_config(config)
|
52 |
+
wrapped = TavilySearchResults(max_results=configuration.max_search_results)
|
53 |
+
result = await wrapped.ainvoke({"query": query})
|
54 |
+
return cast(list[dict[str, Any]], result)
|
55 |
+
|
56 |
+
|
57 |
+
_INFO_PROMPT = """You are doing web research on behalf of a user. You are trying to find out this information:
|
58 |
+
|
59 |
+
<info>
|
60 |
+
{info}
|
61 |
+
</info>
|
62 |
+
|
63 |
+
You just scraped the following website: {url}
|
64 |
+
|
65 |
+
Based on the website content below, jot down some notes about the website.
|
66 |
+
|
67 |
+
<Website content>
|
68 |
+
{content}
|
69 |
+
</Website content>"""
|
70 |
+
|
71 |
+
|
72 |
+
async def scrape_website(
|
73 |
+
url: str,
|
74 |
+
*,
|
75 |
+
state: Annotated[State, InjectedState],
|
76 |
+
config: Annotated[RunnableConfig, InjectedToolArg],
|
77 |
+
) -> str:
|
78 |
+
"""Scrape and summarize content from a given URL.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
str: A summary of the scraped content, tailored to the extraction schema.
|
82 |
+
"""
|
83 |
+
async with aiohttp.ClientSession() as session:
|
84 |
+
async with session.get(url) as response:
|
85 |
+
content = await response.text()
|
86 |
+
configuration = Configuration.from_runnable_config(config)
|
87 |
+
p = _INFO_PROMPT.format(
|
88 |
+
info=json.dumps(configuration.extraction_schema, indent=2),
|
89 |
+
url=url,
|
90 |
+
content=content[:40_000],
|
91 |
+
)
|
92 |
+
raw_model = init_model(config)
|
93 |
+
result = await raw_model.ainvoke(p)
|
94 |
+
return str(result.content)
|
researchgraph/utils.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility functions used in our graph."""
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from langchain.chat_models import init_chat_model
|
6 |
+
from langchain_core.language_models import BaseChatModel
|
7 |
+
from langchain_core.messages import AnyMessage
|
8 |
+
from langchain_core.runnables import RunnableConfig
|
9 |
+
|
10 |
+
from researchgraph.configuration import Configuration
|
11 |
+
|
12 |
+
|
13 |
+
def get_message_text(msg: AnyMessage) -> str:
|
14 |
+
"""Get the text content of a message."""
|
15 |
+
content = msg.content
|
16 |
+
if isinstance(content, str):
|
17 |
+
return content
|
18 |
+
elif isinstance(content, dict):
|
19 |
+
return content.get("text", "")
|
20 |
+
else:
|
21 |
+
txts = [c if isinstance(c, str) else (c.get("text") or "") for c in content]
|
22 |
+
return "".join(txts).strip()
|
23 |
+
|
24 |
+
|
25 |
+
def init_model(config: Optional[RunnableConfig] = None) -> BaseChatModel:
|
26 |
+
"""Initialize the configured chat model."""
|
27 |
+
configuration = Configuration.from_runnable_config(config)
|
28 |
+
fully_specified_name = configuration.model
|
29 |
+
if "/" in fully_specified_name:
|
30 |
+
provider, model = fully_specified_name.split("/", maxsplit=1)
|
31 |
+
else:
|
32 |
+
provider = None
|
33 |
+
model = fully_specified_name
|
34 |
+
return init_chat_model(model, model_provider=provider)
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|