adityasharma0511 commited on
Commit
0a72639
·
verified ·
1 Parent(s): 7ad7124

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +9 -9
  2. app.py +93 -59
  3. requirements.txt +8 -0
Dockerfile CHANGED
@@ -1,16 +1,16 @@
1
- # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
 
4
- # Set the working directory inside the container to /app
5
  WORKDIR /app
6
 
7
- # Copy all files from the current directory on the host to the container's /app directory
8
  COPY . .
9
 
10
- # Install Python dependencies listed in requirements.txt
11
- RUN pip3 install -r requirements.txt
12
 
13
- # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
- CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
15
-
16
- # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
 
 
 
1
  FROM python:3.9-slim
2
 
3
+ # Set the working directory inside the container
4
  WORKDIR /app
5
 
6
+ # Copy all files from the current directory to the container's working directory
7
  COPY . .
8
 
9
+ # Install dependencies from the requirements file without using cache to reduce image size
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
 
12
+ # Define the command to start the application using Gunicorn with 4 worker processes
13
+ # - `-w 4`: Uses 4 worker processes for handling requests
14
+ # - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
15
+ # - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
16
+ CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:rental_price_predictor_api"]
app.py CHANGED
@@ -1,59 +1,93 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import requests
4
-
5
- # Set the title of the Streamlit app
6
- st.title("Airbnb Rental Price Prediction")
7
-
8
- # Section for online prediction
9
- st.subheader("Online Prediction")
10
-
11
- # Collect user input for property features
12
- room_type = st.selectbox("Room Type", ["Entire home/apt", "Private room", "Shared room"])
13
- accommodates = st.number_input("Accommodates (Number of guests)", min_value=1, value=2)
14
- bathrooms = st.number_input("Bathrooms", min_value=1, step=1, value=2)
15
- cancellation_policy = st.selectbox("Cancellation Policy (kind of cancellation policy)", ["strict", "flexible", "moderate"])
16
- cleaning_fee = st.selectbox("Cleaning Fee Charged?", ["True", "False"])
17
- instant_bookable = st.selectbox("Instantly Bookable?", ["False", "True"])
18
- review_scores_rating = st.number_input("Review Score Rating", min_value=0.0, max_value=100.0, step=1.0, value=90.0)
19
- bedrooms = st.number_input("Bedrooms", min_value=0, step=1, value=1)
20
- beds = st.number_input("Beds", min_value=0, step=1, value=1)
21
-
22
- # Convert user input into a DataFrame
23
- input_data = pd.DataFrame([{
24
- 'room_type': room_type,
25
- 'accommodates': accommodates,
26
- 'bathrooms': bathrooms,
27
- 'cancellation_policy': cancellation_policy,
28
- 'cleaning_fee': cleaning_fee,
29
- 'instant_bookable': 'f' if instant_bookable=="False" else "t", # Convert to 't' or 'f'
30
- 'review_scores_rating': review_scores_rating,
31
- 'bedrooms': bedrooms,
32
- 'beds': beds
33
- }])
34
-
35
- # Make prediction when the "Predict" button is clicked
36
- if st.button("Predict"):
37
- response = requests.post("https://adityasharma0511-RentalPricePredictionBackend.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API
38
- if response.status_code == 200:
39
- prediction = response.json()['Predicted Price (in dollars)']
40
- st.success(f"Predicted Rental Price (in dollars): {prediction}")
41
- else:
42
- st.error("Error making prediction.")
43
-
44
- # Section for batch prediction
45
- st.subheader("Batch Prediction")
46
-
47
- # Allow users to upload a CSV file for batch prediction
48
- uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"])
49
-
50
- # Make batch prediction when the "Predict Batch" button is clicked
51
- if uploaded_file is not None:
52
- if st.button("Predict Batch"):
53
- response = requests.post("https://adityasharma0511-RentalPricePredictionBackend.hf.space/v1/rentalbatch", files={"file": uploaded_file}) # Send file to Flask API
54
- if response.status_code == 200:
55
- predictions = response.json()
56
- st.success("Batch predictions completed!")
57
- st.write(predictions) # Display the predictions
58
- else:
59
- st.error("Error making batch prediction.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import numpy as np
3
+ import joblib # For loading the serialized model
4
+ import pandas as pd # For data manipulation
5
+ from flask import Flask, request, jsonify # For creating the Flask API
6
+
7
+ # Initialize the Flask application
8
+ rental_price_predictor_api = Flask("Airbnb Rental Price Predictor")
9
+
10
+ # Load the trained machine learning model
11
+ model = joblib.load("rental_price_prediction_model_v1_0.joblib")
12
+
13
+ # Define a route for the home page (GET request)
14
+ @rental_price_predictor_api.get('/')
15
+ def home():
16
+ """
17
+ This function handles GET requests to the root URL ('/') of the API.
18
+ It returns a simple welcome message.
19
+ """
20
+ return "Welcome to the Airbnb Rental Price Prediction API!"
21
+
22
+ # Define an endpoint for single property prediction (POST request)
23
+ @rental_price_predictor_api.post('/v1/rental')
24
+ def predict_rental_price():
25
+ """
26
+ This function handles POST requests to the '/v1/rental' endpoint.
27
+ It expects a JSON payload containing property details and returns
28
+ the predicted rental price as a JSON response.
29
+ """
30
+ # Get the JSON data from the request body
31
+ property_data = request.get_json()
32
+
33
+ # Extract relevant features from the JSON data
34
+ sample = {
35
+ 'room_type': property_data['room_type'],
36
+ 'accommodates': property_data['accommodates'],
37
+ 'bathrooms': property_data['bathrooms'],
38
+ 'cancellation_policy': property_data['cancellation_policy'],
39
+ 'cleaning_fee': property_data['cleaning_fee'],
40
+ 'instant_bookable': property_data['instant_bookable'],
41
+ 'review_scores_rating': property_data['review_scores_rating'],
42
+ 'bedrooms': property_data['bedrooms'],
43
+ 'beds': property_data['beds']
44
+ }
45
+
46
+ # Convert the extracted data into a Pandas DataFrame
47
+ input_data = pd.DataFrame([sample])
48
+
49
+ # Make prediction (get log_price)
50
+ predicted_log_price = model.predict(input_data)[0]
51
+
52
+ # Calculate actual price
53
+ predicted_price = np.exp(predicted_log_price)
54
+
55
+ # Convert predicted_price to Python float
56
+ predicted_price = round(float(predicted_price), 2)
57
+ # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values.
58
+ # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error
59
+
60
+ # Return the actual price
61
+ return jsonify({'Predicted Price (in dollars)': predicted_price})
62
+
63
+
64
+ # Define an endpoint for batch prediction (POST request)
65
+ @rental_price_predictor_api.post('/v1/rentalbatch')
66
+ def predict_rental_price_batch():
67
+ """
68
+ This function handles POST requests to the '/v1/rentalbatch' endpoint.
69
+ It expects a CSV file containing property details for multiple properties
70
+ and returns the predicted rental prices as a dictionary in the JSON response.
71
+ """
72
+ # Get the uploaded CSV file from the request
73
+ file = request.files['file']
74
+
75
+ # Read the CSV file into a Pandas DataFrame
76
+ input_data = pd.read_csv(file)
77
+
78
+ # Make predictions for all properties in the DataFrame (get log_prices)
79
+ predicted_log_prices = model.predict(input_data).tolist()
80
+
81
+ # Calculate actual prices
82
+ predicted_prices = [round(float(np.exp(log_price)), 2) for log_price in predicted_log_prices]
83
+
84
+ # Create a dictionary of predictions with property IDs as keys
85
+ property_ids = input_data['id'].tolist() # Assuming 'id' is the property ID column
86
+ output_dict = dict(zip(property_ids, predicted_prices)) # Use actual prices
87
+
88
+ # Return the predictions dictionary as a JSON response
89
+ return output_dict
90
+
91
+ # Run the Flask application in debug mode if this script is executed directly
92
+ if __name__ == '__main__':
93
+ rental_price_predictor_api.run(debug=True)
requirements.txt CHANGED
@@ -1,3 +1,11 @@
1
  pandas==2.2.2
 
 
 
 
 
 
 
2
  requests==2.28.1
 
3
  streamlit==1.43.2
 
1
  pandas==2.2.2
2
+ numpy==2.0.2
3
+ scikit-learn==1.6.1
4
+ xgboost==2.1.4
5
+ joblib==1.4.2
6
+ Werkzeug==2.2.2
7
+ flask==2.2.2
8
+ gunicorn==20.1.0
9
  requests==2.28.1
10
+ uvicorn[standard]
11
  streamlit==1.43.2