Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import torch
|
| 7 |
+
import spacy
|
| 8 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, T5Tokenizer
|
| 9 |
+
import functools
|
| 10 |
+
|
| 11 |
+
# Model Caching
|
| 12 |
+
@functools.lru_cache(maxsize=1)
|
| 13 |
+
def load_sentence_model(name):
|
| 14 |
+
return SentenceTransformer(name)
|
| 15 |
+
|
| 16 |
+
@functools.lru_cache(maxsize=1)
|
| 17 |
+
def load_paraphraser():
|
| 18 |
+
tokenizer = T5Tokenizer.from_pretrained("ramsrigouthamg/t5_paraphraser")
|
| 19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ramsrigouthamg/t5_paraphraser")
|
| 20 |
+
return pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
| 21 |
+
|
| 22 |
+
@functools.lru_cache(maxsize=1)
|
| 23 |
+
def load_sentiment():
|
| 24 |
+
return pipeline("sentiment-analysis")
|
| 25 |
+
|
| 26 |
+
# Load static models
|
| 27 |
+
model = load_sentence_model('all-MiniLM-L6-v2')
|
| 28 |
+
nlp = spacy.load("en_core_web_trf")
|
| 29 |
+
paraphraser = load_paraphraser()
|
| 30 |
+
sentiment = load_sentiment()
|
| 31 |
+
|
| 32 |
+
# Similarity and Visualization
|
| 33 |
+
def get_similarity(sentence1, sentence2, model_name, visualization_type):
|
| 34 |
+
model_local = load_sentence_model(model_name)
|
| 35 |
+
emb1 = model_local.encode(sentence1, convert_to_tensor=True)
|
| 36 |
+
emb2 = model_local.encode(sentence2, convert_to_tensor=True)
|
| 37 |
+
score = util.pytorch_cos_sim(emb1, emb2).item()
|
| 38 |
+
|
| 39 |
+
if visualization_type == "Bar Chart":
|
| 40 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 41 |
+
ax.bar(['Similarity'], [score], color='#4CAF50', edgecolor='black')
|
| 42 |
+
ax.set_ylim(0, 1)
|
| 43 |
+
ax.set_ylabel('Cosine Similarity')
|
| 44 |
+
ax.text(0, score + 0.03, f'{score:.2f}', ha='center', fontsize=12, fontweight='bold')
|
| 45 |
+
|
| 46 |
+
elif visualization_type == "Gauge":
|
| 47 |
+
fig, ax = plt.subplots(figsize=(5, 3), subplot_kw={'projection': 'polar'})
|
| 48 |
+
theta = np.linspace(0, np.pi, 100)
|
| 49 |
+
ax.plot(theta, [1] * 100, color='lightgray', linewidth=20, alpha=0.5)
|
| 50 |
+
ax.plot(theta[:int(score * 100)], [1] * int(score * 100), color='#2196F3', linewidth=20)
|
| 51 |
+
ax.set_ylim(0, 1.2)
|
| 52 |
+
ax.set_axis_off()
|
| 53 |
+
ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, fontweight='bold')
|
| 54 |
+
|
| 55 |
+
else: # Heatmap
|
| 56 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
| 57 |
+
cax = ax.imshow([[score]], cmap='coolwarm', vmin=0, vmax=1)
|
| 58 |
+
fig.colorbar(cax, orientation='vertical')
|
| 59 |
+
ax.set_xticks([]); ax.set_yticks([])
|
| 60 |
+
ax.text(0, 0, f'{score:.2f}', ha='center', va='center', fontsize=18, color='black', fontweight='bold')
|
| 61 |
+
|
| 62 |
+
return score, f"Similarity Score: {score:.4f}", fig
|
| 63 |
+
|
| 64 |
+
# Text Analysis
|
| 65 |
+
def analyze_text(sentence1, sentence2):
|
| 66 |
+
s1_words, s2_words = len(sentence1.split()), len(sentence2.split())
|
| 67 |
+
s1_chars, s2_chars = len(sentence1), len(sentence2)
|
| 68 |
+
common = set(sentence1.lower().split()).intersection(set(sentence2.lower().split()))
|
| 69 |
+
overlap = len(common)/max(len(set(sentence1.lower().split())), len(set(sentence2.lower().split())))
|
| 70 |
+
return f"""
|
| 71 |
+
## Text Analysis
|
| 72 |
+
**Sentence 1:** {s1_words} words, {s1_chars} characters
|
| 73 |
+
**Sentence 2:** {s2_words} words, {s2_chars} characters
|
| 74 |
+
**Common Words:** {', '.join(common) if common else 'None'}
|
| 75 |
+
**Word Overlap Rate:** {overlap:.2f}
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
# Named Entity Recognition
|
| 79 |
+
def extract_entities(text):
|
| 80 |
+
doc = nlp(text)
|
| 81 |
+
return [(ent.text, ent.label_) for ent in doc.ents]
|
| 82 |
+
|
| 83 |
+
# POS Tagging
|
| 84 |
+
def get_pos_tags(text):
|
| 85 |
+
doc = nlp(text)
|
| 86 |
+
return [(token.text, token.pos_) for token in doc]
|
| 87 |
+
|
| 88 |
+
def plot_pos_tags(text1, text2):
|
| 89 |
+
doc1 = nlp(text1)
|
| 90 |
+
doc2 = nlp(text2)
|
| 91 |
+
|
| 92 |
+
def count_pos(doc):
|
| 93 |
+
counts = {}
|
| 94 |
+
for token in doc:
|
| 95 |
+
counts[token.pos_] = counts.get(token.pos_, 0) + 1
|
| 96 |
+
return counts
|
| 97 |
+
|
| 98 |
+
pos_counts1 = count_pos(doc1)
|
| 99 |
+
pos_counts2 = count_pos(doc2)
|
| 100 |
+
|
| 101 |
+
# Combine counts for pie chart
|
| 102 |
+
combined_counts = {}
|
| 103 |
+
for tag in set(pos_counts1) | set(pos_counts2):
|
| 104 |
+
combined_counts[tag] = pos_counts1.get(tag, 0) + pos_counts2.get(tag, 0)
|
| 105 |
+
|
| 106 |
+
labels = list(combined_counts.keys())
|
| 107 |
+
sizes = list(combined_counts.values())
|
| 108 |
+
|
| 109 |
+
# Colors sampled to match your uploaded pie chart visually
|
| 110 |
+
custom_colors = [
|
| 111 |
+
'#000066', # Deep navy (N_SING)
|
| 112 |
+
'#CCCCFF', # Light lavender (P)
|
| 113 |
+
'#0066CC', # Blue (DELM)
|
| 114 |
+
'#FF9999', # Light red (ADJ_SIM)
|
| 115 |
+
'#660066', # Deep purple (CON)
|
| 116 |
+
'#CCFFFF', # Light cyan (N_PL)
|
| 117 |
+
'#FFFFCC', # Light yellow (V_PA)
|
| 118 |
+
'#990033', # Deep rose (PRO)
|
| 119 |
+
'#9999FF', # Light blue/purple (ETC)
|
| 120 |
+
'#9966FF', # Extra if needed
|
| 121 |
+
'#CC66CC' # Extra if needed
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 125 |
+
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140, colors=custom_colors[:len(sizes)])
|
| 126 |
+
ax.axis('equal') # Equal aspect ratio makes the pie circular.
|
| 127 |
+
ax.set_title("Combined POS Tag Distribution")
|
| 128 |
+
|
| 129 |
+
return fig
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Paraphrase Detection
|
| 134 |
+
def detect_paraphrase(score, threshold=0.8):
|
| 135 |
+
return "β
Likely Paraphrase" if score >= threshold else "β Not a Paraphrase"
|
| 136 |
+
|
| 137 |
+
# Paraphrase Generator
|
| 138 |
+
def generate_paraphrases(text):
|
| 139 |
+
try:
|
| 140 |
+
outputs = paraphraser(text, max_length=60, num_return_sequences=2, do_sample=True)
|
| 141 |
+
return [o['generated_text'] for o in outputs]
|
| 142 |
+
except:
|
| 143 |
+
return ["Paraphrasing failed or model not loaded."]
|
| 144 |
+
|
| 145 |
+
# Sentiment
|
| 146 |
+
def get_sentiment(text):
|
| 147 |
+
try:
|
| 148 |
+
return sentiment(text)[0]
|
| 149 |
+
except:
|
| 150 |
+
return {'label': 'Unknown', 'score': 0.0}
|
| 151 |
+
|
| 152 |
+
# Main processing
|
| 153 |
+
def process_text(sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset):
|
| 154 |
+
outputs = []
|
| 155 |
+
|
| 156 |
+
score, score_text, fig = get_similarity(sentence1, sentence2, model_name, visualization_type)
|
| 157 |
+
outputs.extend([score_text, fig])
|
| 158 |
+
|
| 159 |
+
analysis = analyze_text(sentence1, sentence2) if perform_analysis else ""
|
| 160 |
+
outputs.append(analysis)
|
| 161 |
+
|
| 162 |
+
paraphrase_result = detect_paraphrase(score)
|
| 163 |
+
outputs.append(paraphrase_result)
|
| 164 |
+
|
| 165 |
+
ner1 = extract_entities(sentence1)
|
| 166 |
+
ner2 = extract_entities(sentence2)
|
| 167 |
+
ner_display = f"""
|
| 168 |
+
## Named Entities
|
| 169 |
+
|
| 170 |
+
**Sentence 1:** {', '.join([f'{e[0]} ({e[1]})' for e in ner1]) if ner1 else 'None'}
|
| 171 |
+
**Sentence 2:** {', '.join([f'{e[0]} ({e[1]})' for e in ner2]) if ner2 else 'None'}
|
| 172 |
+
"""
|
| 173 |
+
outputs.append(ner_display)
|
| 174 |
+
|
| 175 |
+
s1_sentiment = get_sentiment(sentence1)
|
| 176 |
+
s2_sentiment = get_sentiment(sentence2)
|
| 177 |
+
senti_display = f"""
|
| 178 |
+
## Sentiment Analysis
|
| 179 |
+
|
| 180 |
+
**Sentence 1:** {s1_sentiment['label']} (score: {s1_sentiment['score']:.2f})
|
| 181 |
+
**Sentence 2:** {s2_sentiment['label']} (score: {s2_sentiment['score']:.2f})
|
| 182 |
+
"""
|
| 183 |
+
outputs.append(senti_display)
|
| 184 |
+
|
| 185 |
+
para1 = generate_paraphrases(sentence1)
|
| 186 |
+
para2 = generate_paraphrases(sentence2)
|
| 187 |
+
para_text = f"""
|
| 188 |
+
## Paraphrase Suggestions
|
| 189 |
+
|
| 190 |
+
**Sentence 1:**
|
| 191 |
+
- {para1[0]}
|
| 192 |
+
- {para1[1]}
|
| 193 |
+
|
| 194 |
+
**Sentence 2:**
|
| 195 |
+
- {para2[0]}
|
| 196 |
+
- {para2[1]}
|
| 197 |
+
"""
|
| 198 |
+
outputs.append(para_text)
|
| 199 |
+
|
| 200 |
+
# POS Tagging
|
| 201 |
+
pos1 = get_pos_tags(sentence1)
|
| 202 |
+
pos2 = get_pos_tags(sentence2)
|
| 203 |
+
pos_text = f"""
|
| 204 |
+
## Part-of-Speech (POS) Tags
|
| 205 |
+
|
| 206 |
+
**Sentence 1:**
|
| 207 |
+
{', '.join([f"{word} ({pos})" for word, pos in pos1])}
|
| 208 |
+
|
| 209 |
+
**Sentence 2:**
|
| 210 |
+
{', '.join([f"{word} ({pos})" for word, pos in pos2])}
|
| 211 |
+
"""
|
| 212 |
+
outputs.append(pos_text)
|
| 213 |
+
outputs.append(plot_pos_tags(sentence1, sentence2))
|
| 214 |
+
|
| 215 |
+
outputs.append("β
Your input has been submitted! Please check the π Results tab.")
|
| 216 |
+
return outputs
|
| 217 |
+
|
| 218 |
+
# Models
|
| 219 |
+
models = [
|
| 220 |
+
'all-MiniLM-L6-v2',
|
| 221 |
+
'paraphrase-multilingual-MiniLM-L12-v2',
|
| 222 |
+
'paraphrase-MiniLM-L3-v2',
|
| 223 |
+
'distilbert-base-nli-mean-tokens'
|
| 224 |
+
]
|
| 225 |
+
|
| 226 |
+
# Gradio UI
|
| 227 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 228 |
+
gr.Markdown("# π§ͺ SEMA: Semantic Evaluation & Matching Analyzer")
|
| 229 |
+
gr.Markdown("Explore sentence meaning, similarity, and more.")
|
| 230 |
+
|
| 231 |
+
with gr.Tabs():
|
| 232 |
+
with gr.Tab("π Input"):
|
| 233 |
+
sentence1 = gr.Textbox(label="Sentence 1", lines=4)
|
| 234 |
+
sentence2 = gr.Textbox(label="Sentence 2", lines=4)
|
| 235 |
+
model_name = gr.Dropdown(choices=models, value=models[0], label="Model")
|
| 236 |
+
visualization_type = gr.Radio(["Bar Chart", "Gauge", "Heatmap"], value="Gauge", label="Visualization")
|
| 237 |
+
perform_analysis = gr.Checkbox(label="Extra Text Analysis", value=True)
|
| 238 |
+
compare_dataset = gr.Checkbox(label="Compare with Dataset", value=False)
|
| 239 |
+
submit_btn = gr.Button("Run Analysis")
|
| 240 |
+
status_msg = gr.Textbox(label="Status", interactive=False)
|
| 241 |
+
|
| 242 |
+
with gr.Tab("π Results"):
|
| 243 |
+
sim_result = gr.Textbox(label="Similarity Score", interactive=False)
|
| 244 |
+
vis_output = gr.Plot(label="Visualization")
|
| 245 |
+
para_result = gr.Textbox(label="Paraphrase Detection", interactive=False)
|
| 246 |
+
|
| 247 |
+
with gr.Tab("π¬ Deep Insights"):
|
| 248 |
+
with gr.Accordion("π Text Statistics", open=True):
|
| 249 |
+
stats_output = gr.Markdown()
|
| 250 |
+
with gr.Accordion("π§ Named Entity Recognition", open=False):
|
| 251 |
+
ner_output = gr.Markdown()
|
| 252 |
+
with gr.Accordion("π¬ Sentiment Analysis", open=False):
|
| 253 |
+
sentiment_output = gr.Markdown()
|
| 254 |
+
with gr.Accordion("π Paraphrase Suggestions", open=False):
|
| 255 |
+
para_output = gr.Markdown()
|
| 256 |
+
with gr.Accordion("π§Ύ POS Tagging", open=False):
|
| 257 |
+
pos_output = gr.Markdown()
|
| 258 |
+
pos_plot_output = gr.Plot()
|
| 259 |
+
|
| 260 |
+
gr.Examples([
|
| 261 |
+
["The sky is blue.", "The sky has a beautiful blue color."],
|
| 262 |
+
["What is your name?", "Can you tell me your name?"]
|
| 263 |
+
], inputs=[sentence1, sentence2])
|
| 264 |
+
|
| 265 |
+
submit_btn.click(
|
| 266 |
+
fn=process_text,
|
| 267 |
+
inputs=[sentence1, sentence2, model_name, visualization_type, perform_analysis, compare_dataset],
|
| 268 |
+
outputs=[
|
| 269 |
+
sim_result,
|
| 270 |
+
vis_output,
|
| 271 |
+
stats_output,
|
| 272 |
+
para_result,
|
| 273 |
+
ner_output,
|
| 274 |
+
sentiment_output,
|
| 275 |
+
para_output,
|
| 276 |
+
pos_output,
|
| 277 |
+
pos_plot_output,
|
| 278 |
+
status_msg
|
| 279 |
+
]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
demo.launch()
|