Spaces:
Sleeping
Sleeping
Commit
·
38812af
1
Parent(s):
342e3fd
Started Alfred
Browse files- app.py +29 -0
- retriever.py +51 -0
- tools.py +56 -0
app.py
CHANGED
|
@@ -1,4 +1,33 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
def greet(name):
|
| 4 |
return "Hello " + name + "!!"
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
from smolagents import CodeAgent, HfApiModel
|
| 4 |
+
|
| 5 |
+
# Import our custom tools from their modules
|
| 6 |
+
from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
|
| 7 |
+
from retriever import load_guest_dataset
|
| 8 |
+
|
| 9 |
+
# Initialize the Hugging Face model
|
| 10 |
+
model = HfApiModel()
|
| 11 |
+
|
| 12 |
+
# Initialize the web search tool
|
| 13 |
+
search_tool = DuckDuckGoSearchTool()
|
| 14 |
+
|
| 15 |
+
# Initialize the weather tool
|
| 16 |
+
weather_info_tool = WeatherInfoTool()
|
| 17 |
+
|
| 18 |
+
# Initialize the Hub stats tool
|
| 19 |
+
hub_stats_tool = HubStatsTool()
|
| 20 |
+
|
| 21 |
+
# Load the guest dataset and initialize the guest info tool
|
| 22 |
+
guest_info_tool = load_guest_dataset()
|
| 23 |
+
|
| 24 |
+
# Create Alfred with all the tools
|
| 25 |
+
alfred = CodeAgent(
|
| 26 |
+
tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool],
|
| 27 |
+
model=model,
|
| 28 |
+
add_base_tools=True, # Add any additional base tools
|
| 29 |
+
planning_interval=3 # Enable planning every 3 steps
|
| 30 |
+
)
|
| 31 |
|
| 32 |
def greet(name):
|
| 33 |
return "Hello " + name + "!!"
|
retriever.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from langchain_community.retrievers import BM25Retriever
|
| 3 |
+
from langchain.docstore.document import Document
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class GuestInfoRetrieverTool(Tool):
|
| 8 |
+
name = "guest_info_retriever"
|
| 9 |
+
description = "Retrieves detailed information about gala guests based on their name or relation."
|
| 10 |
+
inputs = {
|
| 11 |
+
"query": {
|
| 12 |
+
"type": "string",
|
| 13 |
+
"description": "The name or relation of the guest you want information about."
|
| 14 |
+
}
|
| 15 |
+
}
|
| 16 |
+
output_type = "string"
|
| 17 |
+
|
| 18 |
+
def __init__(self, docs):
|
| 19 |
+
self.retriever = BM25Retriever.from_documents(docs)
|
| 20 |
+
|
| 21 |
+
def forward(self, query: str):
|
| 22 |
+
results = self.retriever.get_relevant_documents(query)
|
| 23 |
+
if results:
|
| 24 |
+
return "\n\n".join([doc.page_content for doc in results[:3]])
|
| 25 |
+
else:
|
| 26 |
+
return "No matching guest information found."
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def load_guest_dataset():
|
| 30 |
+
# Load the dataset
|
| 31 |
+
guest_dataset = datasets.load_dataset("sergiopaniego/unit3-invitees", split="train")
|
| 32 |
+
|
| 33 |
+
# Convert dataset entries into Document objects
|
| 34 |
+
docs = [
|
| 35 |
+
Document(
|
| 36 |
+
page_content="\n".join([
|
| 37 |
+
f"Name: {guest['name']}",
|
| 38 |
+
f"Relation: {guest['relation']}",
|
| 39 |
+
f"Description: {guest['description']}",
|
| 40 |
+
f"Email: {guest['email']}"
|
| 41 |
+
]),
|
| 42 |
+
metadata={"name": guest["name"]}
|
| 43 |
+
)
|
| 44 |
+
for guest in guest_dataset
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Return the tool
|
| 48 |
+
return GuestInfoRetrieverTool(docs)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
tools.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import DuckDuckGoSearchTool
|
| 2 |
+
from smolagents import Tool
|
| 3 |
+
import random
|
| 4 |
+
from huggingface_hub import list_models
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Initialize the DuckDuckGo search tool
|
| 8 |
+
#search_tool = DuckDuckGoSearchTool()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class WeatherInfoTool(Tool):
|
| 12 |
+
name = "weather_info"
|
| 13 |
+
description = "Fetches dummy weather information for a given location."
|
| 14 |
+
inputs = {
|
| 15 |
+
"location": {
|
| 16 |
+
"type": "string",
|
| 17 |
+
"description": "The location to get weather information for."
|
| 18 |
+
}
|
| 19 |
+
}
|
| 20 |
+
output_type = "string"
|
| 21 |
+
|
| 22 |
+
def forward(self, location: str):
|
| 23 |
+
# Dummy weather data
|
| 24 |
+
weather_conditions = [
|
| 25 |
+
{"condition": "Rainy", "temp_c": 15},
|
| 26 |
+
{"condition": "Clear", "temp_c": 25},
|
| 27 |
+
{"condition": "Windy", "temp_c": 20}
|
| 28 |
+
]
|
| 29 |
+
# Randomly select a weather condition
|
| 30 |
+
data = random.choice(weather_conditions)
|
| 31 |
+
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
|
| 32 |
+
|
| 33 |
+
class HubStatsTool(Tool):
|
| 34 |
+
name = "hub_stats"
|
| 35 |
+
description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
|
| 36 |
+
inputs = {
|
| 37 |
+
"author": {
|
| 38 |
+
"type": "string",
|
| 39 |
+
"description": "The username of the model author/organization to find models from."
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
output_type = "string"
|
| 43 |
+
|
| 44 |
+
def forward(self, author: str):
|
| 45 |
+
try:
|
| 46 |
+
# List models from the specified author, sorted by downloads
|
| 47 |
+
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
| 48 |
+
|
| 49 |
+
if models:
|
| 50 |
+
model = models[0]
|
| 51 |
+
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
| 52 |
+
else:
|
| 53 |
+
return f"No models found for author {author}."
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return f"Error fetching models for {author}: {str(e)}"
|
| 56 |
+
|