aegishield commited on
Commit
42155bf
·
1 Parent(s): 58cb436
Files changed (1) hide show
  1. app.py +22 -4
app.py CHANGED
@@ -1,11 +1,29 @@
1
  import gradio as gr
2
  from huggingface_hub import from_pretrained_keras
 
 
3
 
4
- def greet(name):
5
- return "Hello " + name + "!!"
6
-
7
  idpred = from_pretrained_keras("aegishield/idpred")
8
  fingpred = from_pretrained_keras("aegishield/fingpred")
9
 
10
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  iface.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import from_pretrained_keras
3
+ from tensorflow.keras.preprocessing import image
4
+ import numpy as np
5
 
6
+ # Load models
 
 
7
  idpred = from_pretrained_keras("aegishield/idpred")
8
  fingpred = from_pretrained_keras("aegishield/fingpred")
9
 
10
+ def predict_image(img):
11
+ # Preprocess the image (example, adjust based on your model's needs)
12
+ img = img.resize((224, 224)) # Adjust the size according to your model input
13
+ img_array = image.img_to_array(img)
14
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
15
+
16
+ # Predictions
17
+ y_SubjectID_pred = idpred.predict(img_array)
18
+ y_fingerNum_pred = fingpred.predict(img_array)
19
+
20
+ # Process predictions to readable format if necessary
21
+ # For example, if your predictions are one-hot encoded, convert them to labels
22
+
23
+ return f'Subject ID: {y_SubjectID_pred[0]}, Finger Number: {y_fingerNum_pred[0]}'
24
+
25
+ # Create Gradio interface
26
+ iface = gr.Interface(fn=predict_image, inputs="image", outputs="text")
27
+
28
+ # Launch interface
29
  iface.launch()