Spaces:
Runtime error
Runtime error
Commit
·
d2d5fd3
1
Parent(s):
fe7d548
show image name
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def show_fingername(fingernum):
|
|
23 |
else: fingername += "thumb"
|
24 |
return fingername
|
25 |
|
26 |
-
def predict_image(img):
|
27 |
# Ensure the image is a PIL Image
|
28 |
if not isinstance(img, Image.Image):
|
29 |
img = Image.fromarray(img)
|
@@ -44,15 +44,17 @@ def predict_image(img):
|
|
44 |
y_SubjectID_pred = idpred.predict(img_array)
|
45 |
y_fingerNum_pred = fingpred.predict(img_array)
|
46 |
|
|
|
|
|
47 |
# Extract prediction and confidence
|
48 |
-
subject_id = np.argmax(y_SubjectID_pred, axis=1)[0]
|
49 |
finger_num = np.argmax(y_fingerNum_pred, axis=1)[0]
|
50 |
subject_confidence = np.max(y_SubjectID_pred) * 100
|
51 |
finger_confidence = np.max(y_fingerNum_pred) * 100
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
# Create Gradio interface
|
58 |
iface = gr.Interface(fn=predict_image, inputs="image", outputs=["text", "text"])
|
|
|
23 |
else: fingername += "thumb"
|
24 |
return fingername
|
25 |
|
26 |
+
def predict_image(img, image_file):
|
27 |
# Ensure the image is a PIL Image
|
28 |
if not isinstance(img, Image.Image):
|
29 |
img = Image.fromarray(img)
|
|
|
44 |
y_SubjectID_pred = idpred.predict(img_array)
|
45 |
y_fingerNum_pred = fingpred.predict(img_array)
|
46 |
|
47 |
+
image_name = image_file.name if image_file is not None else "No file name"
|
48 |
+
|
49 |
# Extract prediction and confidence
|
50 |
+
subject_id = np.argmax(y_SubjectID_pred, axis=1)[0] + 1
|
51 |
finger_num = np.argmax(y_fingerNum_pred, axis=1)[0]
|
52 |
subject_confidence = np.max(y_SubjectID_pred) * 100
|
53 |
finger_confidence = np.max(y_fingerNum_pred) * 100
|
54 |
|
55 |
+
output_message = f"Image Name: {image_name}\nPredicted Subject ID: {subject_id} (Confidence: {subject_confidence:.2f}%)\nPredicted Finger Type: {finger_num} (Confidence: {finger_confidence:.2f}%)"
|
56 |
+
|
57 |
+
return output_message
|
58 |
|
59 |
# Create Gradio interface
|
60 |
iface = gr.Interface(fn=predict_image, inputs="image", outputs=["text", "text"])
|