|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch" |
|
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True) |
|
emoji_model = AutoModelForCausalLM.from_pretrained( |
|
emoji_model_id, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to("cuda" if torch.cuda.is_available() else "cpu") |
|
emoji_model.eval() |
|
|
|
|
|
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1) |
|
|
|
def classify_emoji_text(text: str): |
|
""" |
|
Step 1: 翻译文本中的 emoji |
|
Step 2: 使用分类器判断是否冒犯 |
|
""" |
|
prompt = f"""请判断下面的文本是否具有冒犯性。 |
|
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。 |
|
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。 |
|
文本如下: |
|
{text} |
|
""" |
|
|
|
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device) |
|
with torch.no_grad(): |
|
output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False) |
|
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
translated_text = decoded.strip().split("文本如下:")[-1].strip() |
|
|
|
result = classifier(translated_text)[0] |
|
label = result["label"] |
|
score = result["score"] |
|
|
|
return translated_text, label, score |