Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import streamlit as st
|
4 |
-
from PIL import Image
|
5 |
-
import pytesseract
|
6 |
-
import pandas as pd
|
7 |
-
import plotly.express as px
|
8 |
|
9 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
10 |
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch"
|
@@ -26,19 +22,26 @@ model_options = {
|
|
26 |
# ✅ 页面配置
|
27 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
28 |
|
29 |
-
# ✅
|
30 |
-
|
31 |
-
st.header("🧠 Configuration")
|
32 |
-
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
33 |
-
selected_model_id = model_options[selected_model]
|
34 |
-
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
#
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def classify_emoji_text(text: str):
|
43 |
prompt = f"输入:{text}\n输出:"
|
44 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
@@ -50,74 +53,21 @@ def classify_emoji_text(text: str):
|
|
50 |
result = classifier(translated_text)[0]
|
51 |
label = result["label"]
|
52 |
score = result["score"]
|
53 |
-
reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."
|
54 |
|
55 |
-
|
56 |
-
return translated_text, label, score, reasoning
|
57 |
|
58 |
-
#
|
59 |
-
st.
|
60 |
-
|
61 |
-
# 文本输入
|
62 |
-
st.subheader("1. 输入与分类")
|
63 |
-
default_text = "你是🐷"
|
64 |
-
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
65 |
-
|
66 |
-
if st.button("🚦 Analyze Text"):
|
67 |
with st.spinner("🔍 Processing..."):
|
68 |
try:
|
69 |
-
translated, label, score
|
70 |
-
st.markdown("
|
71 |
st.code(translated, language="text")
|
72 |
-
st.markdown(f"**Prediction:** {label}")
|
73 |
-
st.markdown(f"**Confidence Score:** {score:.2%}")
|
74 |
-
st.markdown("**Model Explanation:**")
|
75 |
-
st.info(reason)
|
76 |
-
except Exception as e:
|
77 |
-
st.error(f"❌ An error occurred:\n{e}")
|
78 |
|
79 |
-
|
80 |
-
st.markdown("
|
81 |
-
st.subheader("2. Image OCR")
|
82 |
-
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
83 |
-
if uploaded_file:
|
84 |
-
image = Image.open(uploaded_file)
|
85 |
-
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
86 |
-
with st.spinner("🧠 Extracting text via OCR..."):
|
87 |
-
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
|
88 |
-
if ocr_text:
|
89 |
-
st.markdown("**Extracted Text:**")
|
90 |
-
st.code(ocr_text)
|
91 |
-
translated, label, score, reason = classify_emoji_text(ocr_text)
|
92 |
-
st.markdown("**Translated sentence:**")
|
93 |
-
st.code(translated, language="text")
|
94 |
-
st.markdown(f"**Prediction:** {label}")
|
95 |
-
st.markdown(f"**Confidence Score:** {score:.2%}")
|
96 |
-
st.markdown("**Model Explanation:**")
|
97 |
-
st.info(reason)
|
98 |
-
else:
|
99 |
-
st.info("⚠️ No text detected in the image.")
|
100 |
|
101 |
-
|
102 |
-
st.
|
103 |
-
st.subheader("3. Violation Analysis Dashboard")
|
104 |
-
if st.session_state.history:
|
105 |
-
# 展示历史记录
|
106 |
-
df = pd.DataFrame(st.session_state.history)
|
107 |
-
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
108 |
-
for item in st.session_state.history:
|
109 |
-
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
110 |
-
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
111 |
-
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
112 |
-
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
113 |
-
|
114 |
-
# 雷达图
|
115 |
-
radar_df = pd.DataFrame({
|
116 |
-
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
|
117 |
-
"Score": [0.7,0.4,0.3,0.5,0.6]
|
118 |
-
})
|
119 |
-
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
120 |
-
radar_fig.update_traces(line_color='black')
|
121 |
-
st.plotly_chart(radar_fig)
|
122 |
else:
|
123 |
-
st.info("
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
6 |
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch"
|
|
|
22 |
# ✅ 页面配置
|
23 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
24 |
|
25 |
+
# ✅ 页面标题
|
26 |
+
st.title("🧠 Emoji-based Offensive Language Classifier")
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
st.markdown("""
|
29 |
+
This application translates emojis in a sentence and classifies whether the final sentence is offensive or not using two AI models.
|
30 |
+
- The **first model** translates emoji or symbolic phrases into standard Chinese text.
|
31 |
+
- The **second model** performs offensive language detection.
|
32 |
+
""")
|
33 |
|
34 |
+
# Streamlit 侧边栏模型选择
|
35 |
+
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
|
36 |
+
selected_model_id = model_options[selected_model]
|
37 |
+
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
38 |
|
39 |
+
# ✅ 输入区域
|
40 |
+
st.markdown("### ✍️ Input your sentence:")
|
41 |
+
default_text = "你是🐷"
|
42 |
+
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
43 |
+
|
44 |
+
# ✅ 主逻辑封装函数
|
45 |
def classify_emoji_text(text: str):
|
46 |
prompt = f"输入:{text}\n输出:"
|
47 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
|
|
53 |
result = classifier(translated_text)[0]
|
54 |
label = result["label"]
|
55 |
score = result["score"]
|
|
|
56 |
|
57 |
+
return translated_text, label, score
|
|
|
58 |
|
59 |
+
# ✅ 触发按钮
|
60 |
+
if st.button("🚦 Analyze"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with st.spinner("🔍 Processing..."):
|
62 |
try:
|
63 |
+
translated, label, score = classify_emoji_text(text)
|
64 |
+
st.markdown("### 🔄 Translated sentence:")
|
65 |
st.code(translated, language="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
st.markdown(f"### 🎯 Prediction: `{label}`")
|
68 |
+
st.markdown(f"### 📊 Confidence Score: `{score:.2%}`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
else:
|
73 |
+
st.info("👈 Please input text and click the button to classify.")
|