Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(page_title="WhatsApp Chat Analyzer", layout="wide")
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
import preprocessor, helper
|
8 |
+
from sentiment import predict_sentiment_batch
|
9 |
+
import os
|
10 |
+
os.environ["STREAMLIT_SERVER_RUN_ON_SAVE"] = "false"
|
11 |
+
|
12 |
+
# Theme customization
|
13 |
+
st.markdown(
|
14 |
+
"""
|
15 |
+
<style>
|
16 |
+
.main {background-color: #f0f2f6;}
|
17 |
+
</style>
|
18 |
+
""",
|
19 |
+
unsafe_allow_html=True
|
20 |
+
)
|
21 |
+
|
22 |
+
# Set seaborn style
|
23 |
+
sns.set_theme(style="whitegrid")
|
24 |
+
|
25 |
+
st.title("π WhatsApp Chat Sentiment Analysis Dashboard")
|
26 |
+
st.subheader('Instructions')
|
27 |
+
st.markdown("1. Open the sidebar and upload your WhatsApp chat file in .txt format.")
|
28 |
+
st.markdown("2. Wait for the initial processing (minimal delay).")
|
29 |
+
st.markdown("3. Customize the analysis by selecting users or filters.")
|
30 |
+
st.markdown("4. Click 'Show Analysis' for detailed results.")
|
31 |
+
|
32 |
+
st.sidebar.title("Whatsapp Chat Analyzer")
|
33 |
+
uploaded_file = st.sidebar.file_uploader("Upload your chat file (.txt)", type="txt")
|
34 |
+
|
35 |
+
@st.cache_data
|
36 |
+
def load_and_preprocess(file_content):
|
37 |
+
return preprocessor.preprocess(file_content)
|
38 |
+
|
39 |
+
if uploaded_file is not None:
|
40 |
+
raw_data = uploaded_file.read().decode("utf-8")
|
41 |
+
with st.spinner("Loading chat data..."):
|
42 |
+
df, _ = load_and_preprocess(raw_data)
|
43 |
+
st.session_state.df = df
|
44 |
+
|
45 |
+
st.sidebar.header("π Filters")
|
46 |
+
user_list = ["Overall"] + sorted(df["user"].unique().tolist())
|
47 |
+
selected_user = st.sidebar.selectbox("Select User", user_list)
|
48 |
+
|
49 |
+
df_filtered = df if selected_user == "Overall" else df[df["user"] == selected_user]
|
50 |
+
|
51 |
+
if st.sidebar.button("Show Analysis"):
|
52 |
+
if df_filtered.empty:
|
53 |
+
st.warning(f"No data found for user: {selected_user}")
|
54 |
+
else:
|
55 |
+
with st.spinner("Analyzing..."):
|
56 |
+
if 'sentiment' not in df_filtered.columns:
|
57 |
+
try:
|
58 |
+
print("Starting sentiment analysis...")
|
59 |
+
# Get messages as clean strings
|
60 |
+
message_list = df_filtered["message"].astype(str).tolist()
|
61 |
+
message_list = [msg for msg in message_list if msg.strip()]
|
62 |
+
|
63 |
+
print(f"Processing {len(message_list)} messages")
|
64 |
+
print(f"Sample messages: {message_list[:5]}")
|
65 |
+
|
66 |
+
# Directly call the sentiment analysis function
|
67 |
+
df_filtered['sentiment'] = predict_sentiment_batch(message_list)
|
68 |
+
print("Sentiment analysis completed successfully")
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Sentiment analysis failed: {str(e)}")
|
72 |
+
print(f"Full error: {str(e)}")
|
73 |
+
|
74 |
+
st.session_state.df_filtered = df_filtered
|
75 |
+
else:
|
76 |
+
st.session_state.df_filtered = df_filtered
|
77 |
+
|
78 |
+
# Display statistics and visualizations
|
79 |
+
num_messages, words, num_media, num_links = helper.fetch_stats(selected_user, df_filtered)
|
80 |
+
st.title("Top Statistics")
|
81 |
+
col1, col2, col3, col4 = st.columns(4)
|
82 |
+
with col1:
|
83 |
+
st.header("Total Messages")
|
84 |
+
st.title(num_messages)
|
85 |
+
with col2:
|
86 |
+
st.header("Total Words")
|
87 |
+
st.title(words)
|
88 |
+
with col3:
|
89 |
+
st.header("Media Shared")
|
90 |
+
st.title(num_media)
|
91 |
+
with col4:
|
92 |
+
st.header("Links Shared")
|
93 |
+
st.title(num_links)
|
94 |
+
|
95 |
+
st.title("Monthly Timeline")
|
96 |
+
timeline = helper.monthly_timeline(selected_user, df_filtered.sample(min(5000, len(df_filtered))))
|
97 |
+
if not timeline.empty:
|
98 |
+
plt.figure(figsize=(10, 5))
|
99 |
+
sns.lineplot(data=timeline, x='time', y='message', color='green')
|
100 |
+
plt.title("Monthly Timeline")
|
101 |
+
plt.xlabel("Date")
|
102 |
+
plt.ylabel("Messages")
|
103 |
+
st.pyplot(plt)
|
104 |
+
plt.clf()
|
105 |
+
|
106 |
+
st.title("Daily Timeline")
|
107 |
+
daily_timeline = helper.daily_timeline(selected_user, df_filtered.sample(min(5000, len(df_filtered))))
|
108 |
+
if not daily_timeline.empty:
|
109 |
+
plt.figure(figsize=(10, 5))
|
110 |
+
sns.lineplot(data=daily_timeline, x='date', y='message', color='black')
|
111 |
+
plt.title("Daily Timeline")
|
112 |
+
plt.xlabel("Date")
|
113 |
+
plt.ylabel("Messages")
|
114 |
+
st.pyplot(plt)
|
115 |
+
plt.clf()
|
116 |
+
|
117 |
+
st.title("Activity Map")
|
118 |
+
col1, col2 = st.columns(2)
|
119 |
+
with col1:
|
120 |
+
st.header("Most Busy Day")
|
121 |
+
busy_day = helper.week_activity_map(selected_user, df_filtered)
|
122 |
+
if not busy_day.empty:
|
123 |
+
plt.figure(figsize=(10, 5))
|
124 |
+
sns.barplot(x=busy_day.index, y=busy_day.values, palette="Purples_r")
|
125 |
+
plt.title("Most Busy Day")
|
126 |
+
plt.xlabel("Day of Week")
|
127 |
+
plt.ylabel("Message Count")
|
128 |
+
st.pyplot(plt)
|
129 |
+
plt.clf()
|
130 |
+
with col2:
|
131 |
+
st.header("Most Busy Month")
|
132 |
+
busy_month = helper.month_activity_map(selected_user, df_filtered)
|
133 |
+
if not busy_month.empty:
|
134 |
+
plt.figure(figsize=(10, 5))
|
135 |
+
sns.barplot(x=busy_month.index, y=busy_month.values, palette="Oranges_r")
|
136 |
+
plt.title("Most Busy Month")
|
137 |
+
plt.xlabel("Month")
|
138 |
+
plt.ylabel("Message Count")
|
139 |
+
st.pyplot(plt)
|
140 |
+
plt.clf()
|
141 |
+
|
142 |
+
if selected_user == 'Overall':
|
143 |
+
st.title("Most Busy Users")
|
144 |
+
x, new_df = helper.most_busy_users(df_filtered)
|
145 |
+
if not x.empty:
|
146 |
+
plt.figure(figsize=(10, 5))
|
147 |
+
sns.barplot(x=x.index, y=x.values, palette="Reds_r")
|
148 |
+
plt.title("Most Busy Users")
|
149 |
+
plt.xlabel("User")
|
150 |
+
plt.ylabel("Message Count")
|
151 |
+
plt.xticks(rotation=45)
|
152 |
+
st.pyplot(plt)
|
153 |
+
st.title("Word Count by User")
|
154 |
+
plt.clf()
|
155 |
+
st.dataframe(new_df)
|
156 |
+
|
157 |
+
# Most common words analysis
|
158 |
+
st.title("Most Common Words")
|
159 |
+
most_common_df = helper.most_common_words(selected_user, df_filtered)
|
160 |
+
if not most_common_df.empty:
|
161 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
162 |
+
sns.barplot(y=most_common_df[0], x=most_common_df[1], ax=ax, palette="Blues_r")
|
163 |
+
ax.set_title("Top 20 Most Common Words")
|
164 |
+
ax.set_xlabel("Frequency")
|
165 |
+
ax.set_ylabel("Words")
|
166 |
+
plt.xticks(rotation='vertical')
|
167 |
+
st.pyplot(fig)
|
168 |
+
plt.clf()
|
169 |
+
else:
|
170 |
+
st.warning("No data available for most common words.")
|
171 |
+
|
172 |
+
# Emoji analysis
|
173 |
+
st.title("Emoji Analysis")
|
174 |
+
emoji_df = helper.emoji_helper(selected_user, df_filtered)
|
175 |
+
if not emoji_df.empty:
|
176 |
+
col1, col2 = st.columns(2)
|
177 |
+
|
178 |
+
with col1:
|
179 |
+
st.subheader("Top Emojis Used")
|
180 |
+
st.dataframe(emoji_df)
|
181 |
+
|
182 |
+
with col2:
|
183 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
184 |
+
ax.pie(emoji_df[1].head(), labels=emoji_df[0].head(),
|
185 |
+
autopct="%0.2f%%", startangle=90,
|
186 |
+
colors=sns.color_palette("pastel"))
|
187 |
+
ax.set_title("Top Emoji Distribution")
|
188 |
+
st.pyplot(fig)
|
189 |
+
plt.clf()
|
190 |
+
else:
|
191 |
+
st.warning("No data available for emoji analysis.")
|
192 |
+
|
193 |
+
# Sentiment Analysis Visualizations
|
194 |
+
st.title("π Sentiment Analysis")
|
195 |
+
|
196 |
+
# Convert month names to abbreviated format
|
197 |
+
month_map = {
|
198 |
+
'January': 'Jan', 'February': 'Feb', 'March': 'Mar', 'April': 'Apr',
|
199 |
+
'May': 'May', 'June': 'Jun', 'July': 'Jul', 'August': 'Aug',
|
200 |
+
'September': 'Sep', 'October': 'Oct', 'November': 'Nov', 'December': 'Dec'
|
201 |
+
}
|
202 |
+
df_filtered['month'] = df_filtered['month'].map(month_map)
|
203 |
+
|
204 |
+
# Group by month and sentiment
|
205 |
+
monthly_sentiment = df_filtered.groupby(['month', 'sentiment']).size().unstack(fill_value=0)
|
206 |
+
|
207 |
+
# Plotting: Histogram (Bar Chart) for each sentiment
|
208 |
+
st.write("### Sentiment Count by Month (Histogram)")
|
209 |
+
|
210 |
+
# Create a figure with subplots for each sentiment
|
211 |
+
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
|
212 |
+
|
213 |
+
# Plot Positive Sentiment
|
214 |
+
if 'positive' in monthly_sentiment:
|
215 |
+
axes[0].bar(monthly_sentiment.index, monthly_sentiment['positive'], color='green')
|
216 |
+
axes[0].set_title('Positive Sentiment')
|
217 |
+
axes[0].set_xlabel('Month')
|
218 |
+
axes[0].set_ylabel('Count')
|
219 |
+
|
220 |
+
# Plot Neutral Sentiment
|
221 |
+
if 'neutral' in monthly_sentiment:
|
222 |
+
axes[1].bar(monthly_sentiment.index, monthly_sentiment['neutral'], color='blue')
|
223 |
+
axes[1].set_title('Neutral Sentiment')
|
224 |
+
axes[1].set_xlabel('Month')
|
225 |
+
axes[1].set_ylabel('Count')
|
226 |
+
|
227 |
+
# Plot Negative Sentiment
|
228 |
+
if 'negative' in monthly_sentiment:
|
229 |
+
axes[2].bar(monthly_sentiment.index, monthly_sentiment['negative'], color='red')
|
230 |
+
axes[2].set_title('Negative Sentiment')
|
231 |
+
axes[2].set_xlabel('Month')
|
232 |
+
axes[2].set_ylabel('Count')
|
233 |
+
|
234 |
+
# Display the plots in Streamlit
|
235 |
+
st.pyplot(fig)
|
236 |
+
plt.clf()
|
237 |
+
|
238 |
+
# Count sentiments per day of the week
|
239 |
+
sentiment_counts = df_filtered.groupby(['day_of_week', 'sentiment']).size().unstack(fill_value=0)
|
240 |
+
|
241 |
+
# Sort days correctly
|
242 |
+
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
|
243 |
+
sentiment_counts = sentiment_counts.reindex(day_order)
|
244 |
+
|
245 |
+
# Daily Sentiment Analysis
|
246 |
+
st.write("### Daily Sentiment Analysis")
|
247 |
+
|
248 |
+
# Create a Matplotlib figure
|
249 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
250 |
+
sentiment_counts.plot(kind='bar', stacked=False, ax=ax, color=['red', 'blue', 'green'])
|
251 |
+
|
252 |
+
# Customize the plot
|
253 |
+
ax.set_xlabel("Day of the Week")
|
254 |
+
ax.set_ylabel("Count")
|
255 |
+
ax.set_title("Sentiment Distribution per Day of the Week")
|
256 |
+
ax.legend(title="Sentiment")
|
257 |
+
|
258 |
+
# Display the plot in Streamlit
|
259 |
+
st.pyplot(fig)
|
260 |
+
plt.clf()
|
261 |
+
|
262 |
+
# Count messages per user per sentiment (only for Overall view)
|
263 |
+
if selected_user == 'Overall':
|
264 |
+
sentiment_counts = df_filtered.groupby(['user', 'sentiment']).size().reset_index(name='Count')
|
265 |
+
|
266 |
+
# Calculate total messages per sentiment
|
267 |
+
total_per_sentiment = df_filtered['sentiment'].value_counts().to_dict()
|
268 |
+
|
269 |
+
# Add percentage column
|
270 |
+
sentiment_counts['Percentage'] = sentiment_counts.apply(
|
271 |
+
lambda row: (row['Count'] / total_per_sentiment[row['sentiment']]) * 100, axis=1
|
272 |
+
)
|
273 |
+
|
274 |
+
# Separate tables for each sentiment
|
275 |
+
positive_df = sentiment_counts[sentiment_counts['sentiment'] == 'positive'].sort_values(by='Count', ascending=False).head(10)
|
276 |
+
neutral_df = sentiment_counts[sentiment_counts['sentiment'] == 'neutral'].sort_values(by='Count', ascending=False).head(10)
|
277 |
+
negative_df = sentiment_counts[sentiment_counts['sentiment'] == 'negative'].sort_values(by='Count', ascending=False).head(10)
|
278 |
+
|
279 |
+
# Sentiment Contribution Analysis
|
280 |
+
st.write("### Sentiment Contribution by User")
|
281 |
+
|
282 |
+
# Create three columns for side-by-side display
|
283 |
+
col1, col2, col3 = st.columns(3)
|
284 |
+
|
285 |
+
# Display Positive Table
|
286 |
+
with col1:
|
287 |
+
st.subheader("Top Positive Contributors")
|
288 |
+
if not positive_df.empty:
|
289 |
+
st.dataframe(positive_df[['user', 'Count', 'Percentage']])
|
290 |
+
else:
|
291 |
+
st.warning("No positive sentiment data")
|
292 |
+
|
293 |
+
# Display Neutral Table
|
294 |
+
with col2:
|
295 |
+
st.subheader("Top Neutral Contributors")
|
296 |
+
if not neutral_df.empty:
|
297 |
+
st.dataframe(neutral_df[['user', 'Count', 'Percentage']])
|
298 |
+
else:
|
299 |
+
st.warning("No neutral sentiment data")
|
300 |
+
|
301 |
+
# Display Negative Table
|
302 |
+
with col3:
|
303 |
+
st.subheader("Top Negative Contributors")
|
304 |
+
if not negative_df.empty:
|
305 |
+
st.dataframe(negative_df[['user', 'Count', 'Percentage']])
|
306 |
+
else:
|
307 |
+
st.warning("No negative sentiment data")
|
308 |
+
|
309 |
+
# Topic Analysis Section
|
310 |
+
st.title("π Area of Focus: Topic Analysis")
|
311 |
+
|
312 |
+
# Check if topic column exists, otherwise perform topic modeling
|
313 |
+
# if 'topic' not in df_filtered.columns:
|
314 |
+
# with st.spinner("Performing topic modeling..."):
|
315 |
+
# try:
|
316 |
+
# # Add topic modeling here or ensure your helper functions handle it
|
317 |
+
# df_filtered = helper.perform_topic_modeling(df_filtered)
|
318 |
+
# except Exception as e:
|
319 |
+
# st.error(f"Topic modeling failed: {str(e)}")
|
320 |
+
# st.stop()
|
321 |
+
|
322 |
+
# Plot Topic Distribution
|
323 |
+
st.header("Topic Distribution")
|
324 |
+
try:
|
325 |
+
fig = helper.plot_topic_distribution(df_filtered)
|
326 |
+
st.pyplot(fig)
|
327 |
+
plt.clf()
|
328 |
+
except Exception as e:
|
329 |
+
st.warning(f"Could not display topic distribution: {str(e)}")
|
330 |
+
|
331 |
+
# Display Sample Messages for Each Topic
|
332 |
+
st.header("Sample Messages for Each Topic")
|
333 |
+
if 'topic' in df_filtered.columns:
|
334 |
+
for topic_id in sorted(df_filtered['topic'].unique()):
|
335 |
+
st.subheader(f"Topic {topic_id}")
|
336 |
+
|
337 |
+
# Get messages for the current topic
|
338 |
+
filtered_messages = df_filtered[df_filtered['topic'] == topic_id]['message']
|
339 |
+
|
340 |
+
# Determine sample size
|
341 |
+
sample_size = min(5, len(filtered_messages))
|
342 |
+
|
343 |
+
if sample_size > 0:
|
344 |
+
sample_messages = filtered_messages.sample(sample_size, replace=False).tolist()
|
345 |
+
for msg in sample_messages:
|
346 |
+
st.write(f"- {msg}")
|
347 |
+
else:
|
348 |
+
st.write("No messages available for this topic.")
|
349 |
+
else:
|
350 |
+
st.warning("Topic information not available")
|
351 |
+
|
352 |
+
# Topic Distribution Over Time
|
353 |
+
st.header("π
Topic Trends Over Time")
|
354 |
+
|
355 |
+
# Add time frequency selector
|
356 |
+
time_freq = st.selectbox("Select Time Frequency", ["Daily", "Weekly", "Monthly"], key='time_freq')
|
357 |
+
|
358 |
+
# Plot topic trends
|
359 |
+
try:
|
360 |
+
freq_map = {"Daily": "D", "Weekly": "W", "Monthly": "M"}
|
361 |
+
topic_distribution = helper.topic_distribution_over_time(df_filtered, time_freq=freq_map[time_freq])
|
362 |
+
|
363 |
+
# Choose between static and interactive plot
|
364 |
+
use_plotly = st.checkbox("Use interactive visualization", value=True, key='use_plotly')
|
365 |
+
|
366 |
+
if use_plotly:
|
367 |
+
fig = helper.plot_topic_distribution_over_time_plotly(topic_distribution)
|
368 |
+
st.plotly_chart(fig, use_container_width=True)
|
369 |
+
else:
|
370 |
+
fig = helper.plot_topic_distribution_over_time(topic_distribution)
|
371 |
+
st.pyplot(fig)
|
372 |
+
plt.clf()
|
373 |
+
except Exception as e:
|
374 |
+
st.warning(f"Could not display topic trends: {str(e)}")
|
375 |
+
|
376 |
+
# Clustering Analysis Section
|
377 |
+
st.title("π§© Conversation Clusters")
|
378 |
+
|
379 |
+
# Number of clusters input
|
380 |
+
n_clusters = st.slider("Select number of clusters",
|
381 |
+
min_value=2,
|
382 |
+
max_value=10,
|
383 |
+
value=5,
|
384 |
+
key='n_clusters')
|
385 |
+
|
386 |
+
# Perform clustering
|
387 |
+
with st.spinner("Analyzing conversation clusters..."):
|
388 |
+
try:
|
389 |
+
df_clustered, reduced_features, _ = preprocessor.preprocess_for_clustering(df_filtered, n_clusters=n_clusters)
|
390 |
+
|
391 |
+
# Plot clusters
|
392 |
+
st.header("Cluster Visualization")
|
393 |
+
fig = helper.plot_clusters(reduced_features, df_clustered['cluster'])
|
394 |
+
st.pyplot(fig)
|
395 |
+
plt.clf()
|
396 |
+
|
397 |
+
# Cluster Insights
|
398 |
+
st.header("π Cluster Insights")
|
399 |
+
|
400 |
+
# 1. Dominant Conversation Themes
|
401 |
+
st.subheader("1. Dominant Themes")
|
402 |
+
cluster_labels = helper.get_cluster_labels(df_clustered, n_clusters)
|
403 |
+
for cluster_id, label in cluster_labels.items():
|
404 |
+
st.write(f"**Cluster {cluster_id}**: {label}")
|
405 |
+
|
406 |
+
# 2. Temporal Patterns
|
407 |
+
st.subheader("2. Temporal Patterns")
|
408 |
+
temporal_trends = helper.get_temporal_trends(df_clustered)
|
409 |
+
for cluster_id, trend in temporal_trends.items():
|
410 |
+
st.write(f"**Cluster {cluster_id}**: Peaks on {trend['peak_day']} around {trend['peak_time']}")
|
411 |
+
|
412 |
+
# 3. User Contributions
|
413 |
+
if selected_user == 'Overall':
|
414 |
+
st.subheader("3. Top Contributors")
|
415 |
+
user_contributions = helper.get_user_contributions(df_clustered)
|
416 |
+
for cluster_id, users in user_contributions.items():
|
417 |
+
st.write(f"**Cluster {cluster_id}**: {', '.join(users[:3])}...")
|
418 |
+
|
419 |
+
# 4. Sentiment by Cluster
|
420 |
+
st.subheader("4. Sentiment Analysis")
|
421 |
+
sentiment_by_cluster = helper.get_sentiment_by_cluster(df_clustered)
|
422 |
+
for cluster_id, sentiment in sentiment_by_cluster.items():
|
423 |
+
st.write(f"**Cluster {cluster_id}**: {sentiment['positive']}% positive, {sentiment['neutral']}% neutral, {sentiment['negative']}% negative")
|
424 |
+
|
425 |
+
# Sample messages from each cluster
|
426 |
+
st.subheader("Sample Messages")
|
427 |
+
for cluster_id in sorted(df_clustered['cluster'].unique()):
|
428 |
+
with st.expander(f"Cluster {cluster_id} Messages"):
|
429 |
+
cluster_msgs = df_clustered[df_clustered['cluster'] == cluster_id]['message']
|
430 |
+
sample_size = min(3, len(cluster_msgs))
|
431 |
+
if sample_size > 0:
|
432 |
+
for msg in cluster_msgs.sample(sample_size, replace=False):
|
433 |
+
st.write(f"- {msg}")
|
434 |
+
else:
|
435 |
+
st.write("No messages available")
|
436 |
+
|
437 |
+
except Exception as e:
|
438 |
+
st.error(f"Clustering failed: {str(e)}")
|