File size: 4,069 Bytes
359f755
77c0f20
359f755
de8f813
 
24c8512
359f755
 
 
 
 
 
 
 
 
 
 
1b2d49a
359f755
24c8512
77c0f20
70ea05e
359f755
 
24c8512
 
77c0f20
359f755
1b2d49a
 
 
 
 
 
 
 
359f755
 
70ea05e
 
 
 
 
 
 
 
 
 
 
 
24c8512
77c0f20
24c8512
 
 
 
 
 
 
 
 
 
de8f813
24c8512
 
 
 
 
 
 
 
 
 
77c0f20
 
24c8512
 
70ea05e
77c0f20
 
 
 
359f755
 
 
 
 
 
77c0f20
359f755
 
77c0f20
359f755
 
77c0f20
359f755
 
77c0f20
 
359f755
70ea05e
 
 
 
 
 
77c0f20
 
70ea05e
77c0f20
70ea05e
77c0f20
 
359f755
 
77c0f20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
from gradio_leaderboard import Leaderboard
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os

from src.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    AutoEvalColumn,
    fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval

def init_leaderboard(dataframe):
    if dataframe is None:
        raise ValueError("Leaderboard DataFrame is None.")
    
    return Leaderboard(
        value=dataframe,
        select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            AutoEvalColumn.model_type.name,
            AutoEvalColumn.precision.name,
        ],
    )

def run_perplexity_test(model_name, revision, precision):
    """Run perplexity evaluation on demand."""
    if not model_name:
        return "Please enter a model name."
    
    success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
    
    if success:
        return f"βœ… Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults have been saved and will appear in the leaderboard shortly."
    else:
        return f"❌ Evaluation failed: {result}"

# Initialize results repository and directory
try:
    # Try to download existing repository
    try:
        snapshot_download(
            repo_id=RESULTS_REPO,
            local_dir=EVAL_RESULTS_PATH,
            repo_type="dataset",
            tqdm_class=None,
            etag_timeout=30,
            token=TOKEN
        )
    except RepositoryNotFoundError:
        # Create the repository if it doesn't exist
        print(f"Creating new results repository: {RESULTS_REPO}")
        create_repo(
            repo_id=RESULTS_REPO,
            repo_type="dataset",
            private=False,
            token=TOKEN
        )
        # Create local directory
        os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
    print(f"Error initializing results: {e}")
    # Ensure local directory exists even if repo operations fail
    os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)

# Get initial leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)

# Create the Gradio interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="leaderboard-tab", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸ§ͺ Test Model", elem_id="test-model-tab", id=2):
            with gr.Row():
                with gr.Column():
                    model_name = gr.Textbox(label="Model name", placeholder="org/model-name")
                    revision = gr.Textbox(label="Revision", placeholder="main", value="main")
                    precision = gr.Dropdown(
                        choices=["float16", "bfloat16"],
                        label="Precision",
                        value="float16"
                    )
                
                with gr.Column():
                    test_button = gr.Button("πŸš€ Run Perplexity Test", variant="primary")
                    result = gr.Markdown()
            
            test_button.click(
                run_perplexity_test,
                [model_name, revision, precision],
                result
            )

demo.queue(default_concurrency_limit=5).launch()