Spaces:
Runtime error
Runtime error
File size: 8,978 Bytes
de071e9 4382634 de071e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
MLP_SIZE = 11008
EMB_SIZE = 4096
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
GPTNeoXTokenizerFast,
)
import argparse
import pickle
import timeit
import subprocess
import os
from tracing.utils.llama.model import permute_model, rotate_model
from tracing.utils.olmo.model import permute_model as permute_model_olmo
from tracing.utils.llama.matching import align_model
from tracing.utils.evaluate import (
prepare_hf_dataset,
prepare_aya_dataset,
prepare_hf_dataloader,
evaluate,
load_dolma_programming_datasets,
load_m2d2_datasets,
load_generated_datasets,
prepare_random_sample_dataset,
)
from tracing.utils.utils import manual_seed
from tracing.statistics.mc import statistic as mode_stat
from tracing.statistics.l2 import statistic as l2_stat
from tracing.statistics.jsd import statistic as jsd_stat
from tracing.statistics.csu import statistic as csu_stat
from tracing.statistics.csu import statistic_all as csu_all_stat
from tracing.statistics.csh import statistic as csh_stat
from tracing.statistics.match import statistic as match_stat
from tracing.statistics.match import statistic_all as match_all_stat
from tracing.statistics.perm_mc_l2 import statistic as perm_mc_l2_stat
parser = argparse.ArgumentParser(description="Experiment Settings")
parser.add_argument("--base_model_id", default="meta-llama/Llama-2-7b-hf", type=str)
parser.add_argument("--ft_model_id", default="lmsys/vicuna-7b-v1.1", type=str)
parser.add_argument("--permute", action="store_true")
parser.add_argument("--rotate", action="store_true")
parser.add_argument("--align", action="store_true")
parser.add_argument("--dataset", default="wikitext", type=str)
parser.add_argument("--block_size", default=512, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--save", default="results.p", type=str)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--alpha", default=0.5, type=float)
parser.add_argument("--token", default="", type=str)
parser.add_argument("--stat", default="mode", type=str)
parser.add_argument("--attn", action="store_true")
parser.add_argument("--emb", action="store_true")
parser.add_argument("--num_perm", default=99, type=int)
parser.add_argument("--eval", action="store_true")
parser.add_argument(
"--aya_subset", default="aya_human_annotated", type=str, help="Subset of Aya dataset"
)
parser.add_argument("--aya_language", default="eng", type=str, help="Language code for Aya dataset")
args = parser.parse_args()
from huggingface_hub import login
if args.token == "":
hf_token = os.environ["HF_TOKEN"]
else:
hf_token = args.token
login(token=hf_token)
start = timeit.default_timer()
results = {}
results["args"] = args
results["commit"] = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode("ascii").strip()
# fix seed on torch, np and random
manual_seed(args.seed)
dtype = torch.bfloat16
low_cpu_mem_usage = True
print(f"Low CPU Mem Usage Flag set to {low_cpu_mem_usage}")
base_model = AutoModelForCausalLM.from_pretrained(
args.base_model_id, torch_dtype=dtype, low_cpu_mem_usage=low_cpu_mem_usage
)
if "olmo" in args.base_model_id.lower():
tokenizer_name = (
"allenai/OLMo-1.7-7B-hf" if "olmo" in args.base_model_id.lower() else args.base_model_id
)
base_tokenizer = GPTNeoXTokenizerFast.from_pretrained(tokenizer_name, use_fast=False)
elif "Alfred" in args.base_model_id:
base_tokenizer = AutoTokenizer.from_pretrained(args.base_model_id)
elif "Salesforce" in args.base_model_id:
base_tokenizer = AutoTokenizer.from_pretrained(args.ft_model_id, trust_remote_code=True)
else:
base_tokenizer = AutoTokenizer.from_pretrained(args.base_model_id, use_fast=False)
ft_model = AutoModelForCausalLM.from_pretrained(args.ft_model_id, torch_dtype=dtype)
if "olmo" in args.ft_model_id.lower():
tokenizer_name = (
"allenai/OLMo-1.7-7B-hf" if "olmo" in args.ft_model_id.lower() else args.ft_model_id
)
ft_tokenizer = GPTNeoXTokenizerFast.from_pretrained(tokenizer_name, use_fast=False)
elif "Alfred" in args.ft_model_id:
ft_tokenizer = AutoTokenizer.from_pretrained(args.ft_model_id)
elif "Salesforce" in args.ft_model_id:
ft_tokenizer = AutoTokenizer.from_pretrained(args.base_model_id, trust_remote_code=True)
else:
ft_tokenizer = AutoTokenizer.from_pretrained(args.ft_model_id, use_fast=False)
print("base and ft models loaded")
if args.permute is True:
mlp_permutation = torch.randperm(MLP_SIZE)
emb_permutation = torch.randperm(EMB_SIZE)
if "olmo" in args.base_model_id.lower():
permute_model_olmo(base_model, ft_model, mlp_permutation, emb_permutation)
else:
permute_model(base_model, ft_model, mlp_permutation, emb_permutation)
print("ft model permuted")
if args.rotate is True:
rotate_model(ft_model)
print("ft model rotated")
if "70b" in args.base_model_id.lower() and "70b" in args.ft_model_id.lower():
# skip tmp_model
tmp_model = None
elif args.stat == "mode":
tmp_model = AutoModelForCausalLM.from_pretrained(args.base_model_id, torch_dtype=dtype)
# tmp_tokenizer is unused
if args.dataset == "wikitext":
dataset = prepare_hf_dataset("dlwh/wikitext_103_detokenized", args.block_size, base_tokenizer)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
elif args.dataset == "aya":
dataset = prepare_aya_dataset(
args.aya_subset, args.aya_language, args.block_size, base_tokenizer
)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
elif args.dataset.startswith("dolma_"):
language = args.dataset.split("_")[1]
if not language and language is not None:
raise ValueError("Language is an empty string")
columns_ignored = [
"text",
"added",
"id",
"lang",
"metadata",
"source",
"timestamp",
"subdomain",
]
dataset = load_dolma_programming_datasets(
language, args.block_size, base_tokenizer, columns_ignored
)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
elif args.dataset.startswith("m2d2_"):
test_case = args.dataset.split("_")[1]
if not test_case:
raise ValueError("Invalid m2d2 dataset format. Use 'm2d2_testcase' (e.g., 'm2d2_AI')")
columns_ignored = ["text", "added", "id", "source", "subdomain"]
dataset = load_m2d2_datasets(test_case, args.block_size, base_tokenizer, columns_ignored)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
elif args.dataset == "generated":
columns_ignored = ["text"]
dataset = load_generated_datasets(
args.base_model_id, args.ft_model_id, args.block_size, base_tokenizer, columns_ignored
)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
elif args.dataset == "random":
dataset = prepare_random_sample_dataset(20, args.block_size)
dataloader = prepare_hf_dataloader(dataset, args.batch_size)
else:
raise ValueError(f"Unknown dataset: {args.dataset}")
print("dataset loaded")
if args.stat == "mode":
test_stat = lambda base_model, ft_model: mode_stat(
base_model, ft_model, tmp_model, dataloader, args.attn, args.emb, args.alpha
)
results["alpha"] = args.alpha
if args.stat == "l2":
test_stat = lambda base_model, ft_model: l2_stat(base_model, ft_model)
if args.stat == "jsd":
test_stat = lambda base_model, ft_model: jsd_stat(base_model, ft_model, dataloader)
if args.stat == "csu":
test_stat = lambda base_model, ft_model: csu_stat(base_model, ft_model)
if args.stat == "csu_all":
test_stat = lambda base_model, ft_model: csu_all_stat(base_model, ft_model)
if args.stat == "csh_sp":
test_stat = lambda base_model, ft_model: csh_stat(base_model, ft_model, dataloader)
if args.stat == "match":
test_stat = lambda base_model, ft_model: match_stat(base_model, ft_model, dataloader)
if args.stat == "match_all":
test_stat = lambda base_model, ft_model: match_all_stat(base_model, ft_model, dataloader)
if args.stat == "perm_mc_l2":
mc = lambda base_model, ft_model: mode_stat(
base_model, ft_model, tmp_model, dataloader, args.attn, args.emb
)
l2 = lambda base_model, ft_model: l2_stat(base_model, ft_model)
test_stat = lambda base_model, ft_model: perm_mc_l2_stat(
base_model, ft_model, mc, l2, args.num_perm
)
if args.eval is True:
results["base loss"] = sum(evaluate(base_model, dataloader))
results["ft loss"] = sum(evaluate(ft_model, dataloader))
print("losses evaluated")
results["non-aligned test stat"] = test_stat(base_model, ft_model)
print("non-aligned stat computed")
if args.align is True:
align_model(base_model, ft_model, ft_model)
results["aligned test stat"] = test_stat(base_model, ft_model)
print("aligned stat computed")
end = timeit.default_timer()
results["time"] = end - start
print(results)
pickle.dump(results, open(args.save, "wb"))
|