File size: 4,961 Bytes
de071e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pandas as pd
import matplotlib.pyplot as plt
import datetime


def plot_traces(
    results_path,
    metric,
    plot_path,
    model_a_name,
    model_b_name,
    unpermuted_res=False,
    normalize=True,
    alpha_step=0.1,
    end_points=True,
):

    df = pd.read_csv(results_path)

    alphas = [round(alpha * alpha_step, 2) for alpha in range(int(1 / alpha_step + 1))]
    if end_points is False:
        alphas = alphas[1:-1]

    if metric == "loss":

        plt.figure(figsize=(8, 6))
        for index, row in df.iterrows():
            row = row[int(len(row) - (len(row) - 2) / 2) :]
            if normalize:
                row = normalize_trace(row, alpha_step)
            plt.plot(alphas, row, "o-")

        plt.xlabel("Alpha")
        plt.ylabel("Loss")
        plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")
        plot_filename = f"{plot_path}_{datetime.datetime.now().timestamp()}.png"

    if metric == "perplexity":

        plt.figure(figsize=(8, 6))
        for index, row in df.iterrows():
            row = row[2 : int(2 + (len(row) - 2) / 2)]
            if normalize:
                row = normalize_trace(row, alpha_step)
            plt.plot(alphas, row, "o-")

        plt.xlabel("Alpha")
        plt.ylabel("Perplexity")
        plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")
        plot_filename = f"{plot_path}_{datetime.datetime.now().timestamp()}.png"

    if unpermuted_res is not False:
        plt.plot(alphas, normalize_trace(unpermuted_res, alpha_step))

    # Save the plot as a PNG file

    plt.savefig(plot_filename, dpi=300, bbox_inches="tight")
    plt.close()


def plot_trace(losses, alpha_step, normalize, model_a_name, model_b_name, plot_path):

    plt.figure(figsize=(8, 6))
    if normalize:
        losses = normalize_trace(losses, alpha_step)
    alphas = [round(alpha * alpha_step, 2) for alpha in range(int(1 / alpha_step + 1))]
    plt.plot(alphas, losses, "o-")

    plt.xlabel("Alpha")
    plt.ylabel("Loss")
    plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")
    plot_filename = f"{plot_path}_{datetime.datetime.now().timestamp()}.png"

    plt.savefig(plot_filename, dpi=300, bbox_inches="tight")
    plt.close()


def normalize_trace(trace, alpha_step):
    slope = trace[-1] - trace[0]
    start = trace[0]
    for i in range(len(trace)):
        trace[i] -= slope * alpha_step * i
        trace[i] -= start
    return trace


def normalize_trace_2(trace, alphas):
    slope = trace[-1] - trace[0]
    start = trace[0]
    for i in range(len(trace)):
        trace[i] -= slope * alphas[i]
        trace[i] -= start
    return trace


def max_loss_ahmed(results_path, num_points=5, normalize=True, alphas=[0.0, 0.3, 0.5, 0.7, 1.0]):
    df = pd.read_csv(results_path)

    max_losses = []

    for index, row in df.iterrows():
        row = row[-num_points:]
        if normalize:
            row = normalize_trace_2(row, alphas)
        max_losses.append(max(row))

    return max_losses


def max_loss_compare(results_path, unpermuted_loss, num_points, normalize=True, alpha_step=0.1):
    df = pd.read_csv(results_path)
    alphas = [round(alpha * alpha_step, 2) for alpha in range(int(1 / alpha_step + 1))]

    permuted_max_losses = []

    for index, row in df.iterrows():
        row = row[-num_points:]
        if normalize:
            row = normalize_trace(row, alpha_step)
        permuted_max_losses.append(max(row))

    if normalize:
        unpermuted_loss = normalize_trace(unpermuted_loss, alpha_step)
    unpermuted_max_loss = max(unpermuted_loss)

    counter = 0
    for m in permuted_max_losses:
        if m > unpermuted_max_loss:
            counter += 1

    return counter, len(permuted_max_losses)


def avg_loss_compare(results_path, unpermuted_loss, num_points, normalize=True, alpha_step=0.1):
    df = pd.read_csv(results_path)
    alphas = [round(alpha * alpha_step, 2) for alpha in range(int(1 / alpha_step + 1))]

    permuted_avg_losses = []

    for index, row in df.iterrows():
        row = row[-num_points:]
        if normalize:
            row = normalize_trace(row, alpha_step)
        permuted_avg_losses.append(sum(row) / len(row))

    if normalize:
        unpermuted_loss = normalize_trace(unpermuted_loss, alpha_step)
    unpermuted_avg_loss = sum(unpermuted_loss) / len(unpermuted_loss)

    counter = 0
    for m in permuted_avg_losses:
        if m > unpermuted_avg_loss:
            counter += 1

    return counter, len(permuted_avg_losses)


def avg_loss_ahmed(results_path, num_points=5, normalize=True, alphas=[0.0, 0.3, 0.5, 0.7, 1.0]):
    df = pd.read_csv(results_path)

    avg_losses = []

    for index, row in df.iterrows():
        row = row[-num_points:]
        if normalize:
            row = normalize_trace_2(row, alphas)
        avg_losses.append(sum(row) / len(row))

    return avg_losses


def compute_p_value(counter, total):
    return (total - counter - 1) / total