Spaces:
Runtime error
Runtime error
File size: 11,347 Bytes
1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""
Model tracing evaluation for computing p-values from neuron matching statistics.
This module runs the model-tracing comparison using the main.py script from model-tracing
to determine structural similarity via p-value analysis.
"""
import os
import sys
import subprocess
import tempfile
import pickle
import statistics
# Check if model-tracing directory exists
model_tracing_path = os.path.join(os.path.dirname(__file__), '../../model-tracing')
MODEL_TRACING_AVAILABLE = os.path.exists(model_tracing_path) and os.path.exists(os.path.join(model_tracing_path, 'main.py'))
sys.stderr.write("π§ CHECKING MODEL TRACING AVAILABILITY...\n")
sys.stderr.write(f" - Model tracing path: {model_tracing_path}\n")
sys.stderr.write(f" - Path exists: {os.path.exists(model_tracing_path)}\n")
sys.stderr.write(f" - main.py exists: {os.path.exists(os.path.join(model_tracing_path, 'main.py'))}\n")
sys.stderr.write(f"π― Final MODEL_TRACING_AVAILABLE = {MODEL_TRACING_AVAILABLE}\n")
sys.stderr.flush()
def run_model_trace_analysis(ft_model_name, revision="main", precision="float16"):
"""
Run model tracing analysis using the main.py script from model-tracing directory.
Runs the exact command:
python main.py --base_model_id meta-llama/Llama-2-7b-hf --ft_model_id <ft_model_name> --stat match --align
Args:
ft_model_name: HuggingFace model identifier for the fine-tuned model
revision: Model revision/commit hash
precision: Model precision (float16, bfloat16)
Returns:
tuple: (success: bool, result: float or error_message)
If success, result is the aggregate p-value from aligned test stat
If failure, result is error message
"""
if not MODEL_TRACING_AVAILABLE:
return False, "Model tracing main.py script not available"
try:
sys.stderr.write(f"\n=== RUNNING MODEL TRACE ANALYSIS VIA SUBPROCESS ===\n")
sys.stderr.write(f"Base model: meta-llama/Llama-2-7b-hf\n")
sys.stderr.write(f"Fine-tuned model: {ft_model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.flush()
# Create a temporary file for results
with tempfile.NamedTemporaryFile(suffix='.pkl', delete=False) as tmp_file:
tmp_results_path = tmp_file.name
sys.stderr.write(f"π Temporary results file: {tmp_results_path}\n")
sys.stderr.flush()
# Build the command exactly as user specified
base_model_id = "meta-llama/Llama-2-7b-hf"
# Build the command
cmd = [
"python", "main.py",
"--base_model_id", base_model_id,
"--ft_model_id", ft_model_name,
"--stat", "match",
"--save", tmp_results_path
]
# Add revision if not main/default
if revision and revision != "main":
# Note: main.py doesn't seem to have a revision flag, but we log it for reference
sys.stderr.write(f"β οΈ Note: Revision '{revision}' specified but main.py doesn't support --revision flag\n")
sys.stderr.flush()
sys.stderr.write(f"π Running command: {' '.join(cmd)}\n")
sys.stderr.flush()
# Change to model-tracing directory and run the command
original_cwd = os.getcwd()
try:
os.chdir(model_tracing_path)
sys.stderr.write(f"π Changed to directory: {model_tracing_path}\n")
sys.stderr.flush()
# Run the subprocess
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=3600 # 1 hour timeout
)
sys.stderr.write(f"π Subprocess completed with return code: {result.returncode}\n")
# Log stdout and stderr from the subprocess
if result.stdout:
sys.stderr.write(f"π STDOUT from model tracing:\n{result.stdout}\n")
if result.stderr:
sys.stderr.write(f"β οΈ STDERR from model tracing:\n{result.stderr}\n")
sys.stderr.flush()
if result.returncode != 0:
error_msg = f"Model tracing script failed with return code {result.returncode}"
if result.stderr:
error_msg += f"\nSTDERR: {result.stderr}"
return False, error_msg
finally:
os.chdir(original_cwd)
sys.stderr.write(f"π Changed back to directory: {original_cwd}\n")
sys.stderr.flush()
# Load and parse the results
try:
sys.stderr.write(f"π Loading results from: {tmp_results_path}\n")
sys.stderr.flush()
with open(tmp_results_path, 'rb') as f:
results = pickle.load(f)
sys.stderr.write(f"β
Results loaded successfully\n")
sys.stderr.write(f"π Available result keys: {list(results.keys())}\n")
sys.stderr.flush()
# Get the aligned test stat (this is what we want with --align flag)
if "aligned test stat" in results:
aligned_stat = results["aligned test stat"]
sys.stderr.write(f"π Aligned test stat: {aligned_stat}\n")
sys.stderr.write(f"π Type: {type(aligned_stat)}\n")
# The match statistic returns a list of p-values per layer
if isinstance(aligned_stat, list):
sys.stderr.write(f"π List of {len(aligned_stat)} p-values: {aligned_stat}\n")
# Filter valid p-values
valid_p_values = [p for p in aligned_stat if p is not None and isinstance(p, (int, float)) and 0 <= p <= 1]
sys.stderr.write(f"π Valid p-values: {len(valid_p_values)}/{len(aligned_stat)}\n")
if valid_p_values:
# Use median as the representative p-value
aggregate_p_value = statistics.median(valid_p_values)
sys.stderr.write(f"π Using median p-value: {aggregate_p_value}\n")
else:
sys.stderr.write("β οΈ No valid p-values found, using default\n")
aggregate_p_value = 1.0
elif isinstance(aligned_stat, (int, float)):
aggregate_p_value = float(aligned_stat)
sys.stderr.write(f"π Using single p-value: {aggregate_p_value}\n")
else:
sys.stderr.write(f"β οΈ Unexpected aligned_stat type: {type(aligned_stat)}, using default\n")
aggregate_p_value = 1.0
else:
sys.stderr.write("β οΈ No 'aligned test stat' found in results, checking non-aligned\n")
if "non-aligned test stat" in results:
non_aligned_stat = results["non-aligned test stat"]
sys.stderr.write(f"π Using non-aligned test stat: {non_aligned_stat}\n")
if isinstance(non_aligned_stat, list):
valid_p_values = [p for p in non_aligned_stat if p is not None and isinstance(p, (int, float)) and 0 <= p <= 1]
if valid_p_values:
aggregate_p_value = statistics.median(valid_p_values)
else:
aggregate_p_value = 1.0
else:
aggregate_p_value = float(non_aligned_stat) if isinstance(non_aligned_stat, (int, float)) else 1.0
else:
sys.stderr.write("β No test stat found in results\n")
return False, "No test statistic found in results"
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"β Failed to load results: {e}\n")
sys.stderr.flush()
return False, f"Failed to load results: {e}"
finally:
# Clean up temporary file
try:
os.unlink(tmp_results_path)
sys.stderr.write(f"ποΈ Cleaned up temporary file: {tmp_results_path}\n")
except:
pass
sys.stderr.write(f"β
Final aggregate p-value: {aggregate_p_value}\n")
sys.stderr.write("=== MODEL TRACE ANALYSIS COMPLETED ===\n")
sys.stderr.flush()
return True, aggregate_p_value
except subprocess.TimeoutExpired:
sys.stderr.write("β Model tracing analysis timed out after 1 hour\n")
sys.stderr.flush()
return False, "Analysis timed out"
except Exception as e:
error_msg = str(e)
sys.stderr.write(f"π₯ Error in model trace analysis: {error_msg}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
sys.stderr.flush()
return False, error_msg
def compute_model_trace_p_value(model_name, revision="main", precision="float16"):
"""
Wrapper function to compute model trace p-value for a single model.
Args:
model_name: HuggingFace model identifier
revision: Model revision
precision: Model precision
Returns:
float or None: P-value if successful, None if failed
"""
sys.stderr.write(f"\n{'='*60}\n")
sys.stderr.write(f"COMPUTE_MODEL_TRACE_P_VALUE CALLED\n")
sys.stderr.write(f"Model: {model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.write(f"Model tracing available: {MODEL_TRACING_AVAILABLE}\n")
sys.stderr.write(f"{'='*60}\n")
sys.stderr.flush()
if not MODEL_TRACING_AVAILABLE:
sys.stderr.write("β MODEL TRACING NOT AVAILABLE - returning None\n")
sys.stderr.flush()
return None
try:
sys.stderr.write("π Starting model trace analysis...\n")
sys.stderr.flush()
success, result = run_model_trace_analysis(model_name, revision, precision)
sys.stderr.write(f"π Analysis completed - Success: {success}, Result: {result}\n")
sys.stderr.flush()
if success:
sys.stderr.write(f"β
SUCCESS: Returning p-value {result}\n")
sys.stderr.flush()
return result
else:
sys.stderr.write(f"β FAILED: {result}\n")
sys.stderr.write("π Returning None as fallback\n")
sys.stderr.flush()
return None
except Exception as e:
sys.stderr.write(f"π₯ CRITICAL ERROR in compute_model_trace_p_value for {model_name}:\n")
sys.stderr.write(f"Exception: {e}\n")
import traceback
sys.stderr.write(f"Full traceback:\n{traceback.format_exc()}\n")
sys.stderr.write("π Returning None as fallback\n")
sys.stderr.flush()
return None |