Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import snapshot_download, create_repo | |
from huggingface_hub.utils import RepositoryNotFoundError | |
import os | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
from src.populate import get_leaderboard_df | |
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval | |
def create_results_dataframe(): | |
"""Create and return the results DataFrame for display""" | |
import sys | |
sys.stderr.write("\nπ CREATE_RESULTS_DATAFRAME CALLED\n") | |
sys.stderr.flush() | |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
sys.stderr.write(f"π Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n") | |
sys.stderr.flush() | |
if df is None or df.empty: | |
sys.stderr.write("β οΈ DataFrame is None or empty, returning empty DataFrame\n") | |
sys.stderr.flush() | |
# Return empty DataFrame with proper columns | |
return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"]) | |
sys.stderr.write(f"π Original DataFrame columns: {list(df.columns)}\n") | |
sys.stderr.flush() | |
# Check if required columns exist | |
required_cols = [ | |
AutoEvalColumn.model.name, | |
"Perplexity", | |
AutoEvalColumn.model_trace_p_value.name, | |
AutoEvalColumn.average.name, | |
AutoEvalColumn.model_type.name, | |
AutoEvalColumn.precision.name, | |
] | |
missing_cols = [col for col in required_cols if col not in df.columns] | |
if missing_cols: | |
sys.stderr.write(f"β οΈ Missing columns in DataFrame: {missing_cols}\n") | |
sys.stderr.flush() | |
# Add missing columns with default values | |
for col in missing_cols: | |
if col == AutoEvalColumn.model_trace_p_value.name: | |
df[col] = None | |
sys.stderr.write(f"β Added {col} column with None values\n") | |
# Select and rename columns for display | |
try: | |
display_df = df[required_cols].copy() | |
sys.stderr.write(f"β Selected columns successfully: {list(display_df.columns)}\n") | |
except Exception as e: | |
sys.stderr.write(f"π₯ Error selecting columns: {e}\n") | |
sys.stderr.flush() | |
return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"]) | |
# Rename columns for better display | |
display_df.columns = ["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"] | |
sys.stderr.write(f"π― Final display DataFrame shape: {display_df.shape}\n") | |
sys.stderr.write(f"π― Final columns: {list(display_df.columns)}\n") | |
# Check p-value column | |
if "Match P-Value" in display_df.columns: | |
p_value_stats = display_df["Match P-Value"].describe() | |
sys.stderr.write(f"π P-Value column stats:\n{p_value_stats}\n") | |
sys.stderr.flush() | |
return display_df | |
def run_perplexity_test(model_name, revision, precision): | |
"""Run perplexity evaluation on demand.""" | |
import sys | |
import traceback | |
import gradio as gr | |
if not model_name: | |
return "Please enter a model name.", gr.update(), gr.update() | |
try: | |
# Use stderr for more reliable logging in HF Spaces | |
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n") | |
sys.stderr.write(f"Model: {model_name}\n") | |
sys.stderr.write(f"Revision: {revision}\n") | |
sys.stderr.write(f"Precision: {precision}\n") | |
sys.stderr.flush() | |
success, result = run_dynamic_perplexity_eval(model_name, revision, precision) | |
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n") | |
sys.stderr.flush() | |
if success: | |
sys.stderr.write("Evaluation succeeded - updating both results tables\n") | |
sys.stderr.flush() | |
# Get updated results (this will trigger model trace p-value computation for the new model) | |
sys.stderr.write("π Creating updated results DataFrame (may compute model trace p-values)...\n") | |
sys.stderr.flush() | |
updated_df = create_results_dataframe() | |
sys.stderr.write("β Updated DataFrame created successfully\n") | |
sys.stderr.flush() | |
success_msg = f"""β **Perplexity evaluation completed successfully!** | |
**Model**: {model_name} | |
**Perplexity Score**: {result:.4f} | |
π **Results have been saved and both tables have been updated!** | |
Note: Model trace p-value computation may take additional time and will appear in the logs.""" | |
return success_msg, gr.update(value=updated_df), gr.update(value=updated_df) | |
else: | |
return f"β **Evaluation failed**: {result}", gr.update(), gr.update() | |
except Exception as e: | |
error_msg = str(e) | |
traceback_str = traceback.format_exc() | |
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n") | |
sys.stderr.write(f"Traceback: {traceback_str}\n") | |
sys.stderr.flush() | |
return f"β **Critical error**: {error_msg}", gr.update(), gr.update() | |
# Initialize results repository and directory | |
try: | |
# Try to download existing repository | |
try: | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN | |
) | |
except RepositoryNotFoundError: | |
# Create the repository if it doesn't exist | |
print(f"Creating new results repository: {RESULTS_REPO}") | |
create_repo( | |
repo_id=RESULTS_REPO, | |
repo_type="dataset", | |
private=False, | |
token=TOKEN | |
) | |
# Create local directory | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
except Exception as e: | |
print(f"Error initializing results: {e}") | |
# Ensure local directory exists even if repo operations fail | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
# Get initial results data | |
import sys | |
sys.stderr.write("\nπ STARTING GRADIO APP INITIALIZATION\n") | |
sys.stderr.write("π Creating initial results DataFrame...\n") | |
sys.stderr.flush() | |
RESULTS_DF = create_results_dataframe() | |
sys.stderr.write(f"β Initial DataFrame created with shape: {RESULTS_DF.shape}\n") | |
sys.stderr.write(f"π Columns: {list(RESULTS_DF.columns)}\n") | |
sys.stderr.flush() | |
# Create the Gradio interface | |
sys.stderr.write("π¨ Creating Gradio interface...\n") | |
sys.stderr.flush() | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Results", elem_id="results-tab", id=0): | |
gr.Markdown("## Model Evaluation Results") | |
results_table = gr.DataFrame( | |
value=RESULTS_DF, | |
headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"], | |
interactive=False, | |
wrap=False | |
) | |
with gr.TabItem("π About", elem_id="about-tab", id=1): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2): | |
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.") | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2") | |
revision = gr.Textbox(label="Revision", placeholder="main", value="main") | |
precision = gr.Dropdown( | |
choices=["float16", "bfloat16"], | |
label="Precision", | |
value="float16" | |
) | |
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True) | |
with gr.Column(): | |
test_button = gr.Button("π Run Perplexity Test", variant="primary") | |
result = gr.Markdown() | |
gr.Markdown("## Live Results") | |
live_results_table = gr.DataFrame( | |
value=RESULTS_DF, | |
headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"], | |
interactive=False, | |
wrap=False | |
) | |
gr.Markdown(""" | |
### Tips: | |
- **Check stderr logs** in HF Spaces for detailed debugging information | |
- **Results will update automatically** in the table above after evaluation completes | |
- **Example models to test**: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`, `openai-community/gpt2-large` | |
- **Lower perplexity scores = better performance** (better at predicting text) | |
### How it works: | |
1. Enter a model name from Hugging Face Hub | |
2. Click "Run Perplexity Test" | |
3. Wait for evaluation to complete (may take a few minutes for large models) | |
4. Results will appear automatically in the table above! | |
""") | |
test_button.click( | |
run_perplexity_test, | |
[model_name, revision, precision], | |
[result, live_results_table, results_table] | |
) | |
sys.stderr.write("π― GRADIO INTERFACE SETUP COMPLETE\n") | |
sys.stderr.write("π LAUNCHING GRADIO APP WITH MODEL TRACING INTEGRATION\n") | |
sys.stderr.write("π Features enabled:\n") | |
sys.stderr.write(" - Perplexity evaluation\n") | |
sys.stderr.write(" - Model trace p-value computation (vs GPT-2 base)\n") | |
sys.stderr.write(" - Match statistic with alignment\n") | |
sys.stderr.write("π Ready to accept requests!\n") | |
sys.stderr.flush() | |
demo.queue(default_concurrency_limit=5).launch() |