Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import snapshot_download, create_repo | |
from huggingface_hub.utils import RepositoryNotFoundError | |
import os | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
AutoEvalColumn, | |
fields, | |
) | |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER | |
from src.populate import get_leaderboard_df | |
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval | |
def create_results_dataframe(): | |
"""Create and return the results DataFrame for display""" | |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
if df is None or df.empty: | |
# Return empty DataFrame with proper columns | |
return pd.DataFrame(columns=["Model", "Perplexity", "Average Score", "Type", "Precision"]) | |
# Select and rename columns for display | |
display_df = df[[ | |
AutoEvalColumn.model.name, | |
"Perplexity", # This matches the task column name from Tasks.task0.value.col_name | |
AutoEvalColumn.average.name, | |
AutoEvalColumn.model_type.name, | |
AutoEvalColumn.precision.name, | |
]].copy() | |
# Rename columns for better display | |
display_df.columns = ["Model", "Perplexity", "Average Score", "Type", "Precision"] | |
return display_df | |
def run_perplexity_test(model_name, revision, precision): | |
"""Run perplexity evaluation on demand.""" | |
import sys | |
import traceback | |
import gradio as gr | |
if not model_name: | |
return "Please enter a model name.", gr.update() | |
try: | |
# Use stderr for more reliable logging in HF Spaces | |
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n") | |
sys.stderr.write(f"Model: {model_name}\n") | |
sys.stderr.write(f"Revision: {revision}\n") | |
sys.stderr.write(f"Precision: {precision}\n") | |
sys.stderr.flush() | |
success, result = run_dynamic_perplexity_eval(model_name, revision, precision) | |
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n") | |
sys.stderr.flush() | |
if success: | |
sys.stderr.write("Evaluation succeeded - updating results table\n") | |
sys.stderr.flush() | |
# Get updated results | |
updated_df = create_results_dataframe() | |
success_msg = f"""β **Perplexity evaluation completed successfully!** | |
**Model**: {model_name} | |
**Perplexity Score**: {result:.4f} | |
π **Results have been saved and the table below has been updated!**""" | |
return success_msg, gr.update(value=updated_df) | |
else: | |
return f"β **Evaluation failed**: {result}", gr.update() | |
except Exception as e: | |
error_msg = str(e) | |
traceback_str = traceback.format_exc() | |
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n") | |
sys.stderr.write(f"Traceback: {traceback_str}\n") | |
sys.stderr.flush() | |
return f"β **Critical error**: {error_msg}", gr.update() | |
# Initialize results repository and directory | |
try: | |
# Try to download existing repository | |
try: | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN | |
) | |
except RepositoryNotFoundError: | |
# Create the repository if it doesn't exist | |
print(f"Creating new results repository: {RESULTS_REPO}") | |
create_repo( | |
repo_id=RESULTS_REPO, | |
repo_type="dataset", | |
private=False, | |
token=TOKEN | |
) | |
# Create local directory | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
except Exception as e: | |
print(f"Error initializing results: {e}") | |
# Ensure local directory exists even if repo operations fail | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
# Get initial results data | |
RESULTS_DF = create_results_dataframe() | |
# Create the Gradio interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Results", elem_id="results-tab", id=0): | |
gr.Markdown("## Model Evaluation Results") | |
results_table = gr.DataFrame( | |
value=RESULTS_DF, | |
headers=["Model", "Perplexity", "Average Score", "Type", "Precision"], | |
interactive=False, | |
wrap=False | |
) | |
with gr.TabItem("π About", elem_id="about-tab", id=1): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2): | |
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.") | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2") | |
revision = gr.Textbox(label="Revision", placeholder="main", value="main") | |
precision = gr.Dropdown( | |
choices=["float16", "bfloat16"], | |
label="Precision", | |
value="float16" | |
) | |
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True) | |
with gr.Column(): | |
test_button = gr.Button("π Run Perplexity Test", variant="primary") | |
result = gr.Markdown() | |
gr.Markdown("## Live Results") | |
live_results_table = gr.DataFrame( | |
value=RESULTS_DF, | |
headers=["Model", "Perplexity", "Average Score", "Type", "Precision"], | |
interactive=False, | |
wrap=False | |
) | |
gr.Markdown(""" | |
### Tips: | |
- **Check stderr logs** in HF Spaces for detailed debugging information | |
- **Results will update automatically** in the table above after evaluation completes | |
- **Example models to test**: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`, `openai-community/gpt2-large` | |
- **Lower perplexity scores = better performance** (better at predicting text) | |
### How it works: | |
1. Enter a model name from Hugging Face Hub | |
2. Click "Run Perplexity Test" | |
3. Wait for evaluation to complete (may take a few minutes for large models) | |
4. Results will appear automatically in the table above! | |
""") | |
test_button.click( | |
run_perplexity_test, | |
[model_name, revision, precision], | |
[result, live_results_table] | |
) | |
demo.queue(default_concurrency_limit=5).launch() |