Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
import itertools | |
import os | |
from datasets import load_dataset | |
from tqdm import tqdm | |
import math | |
import matplotlib.pyplot as plt | |
import csv | |
from utils import interpolate_models | |
import time | |
import argparse | |
import glob | |
import gc | |
block_size = 2048 | |
""" | |
Script for running ablation of tests on m2d2 dataset rather | |
than simply wikitext | |
""" | |
def group_texts(examples): | |
# Concatenate all texts. | |
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} | |
total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
# customize this part to your needs. | |
total_length = (total_length // block_size) * block_size | |
# Split by chunks of max_len. | |
result = { | |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
for k, t in concatenated_examples.items() | |
} | |
result["labels"] = result["input_ids"].copy() | |
return result | |
def load_model(model_name): | |
return AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
def main(args): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
os.environ["WANDB_MODE"] = "disabled" | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
model_arch = args.model_arch | |
if model_arch == "llama": | |
model_list = [ | |
"meta-llama/Llama-2-7b-hf", | |
"meta-llama/Llama-2-7b-chat-hf", | |
"meta-llama/CodeLlama-7b-Python-hf", | |
"meta-llama/CodeLlama-7b-Instruct-hf", | |
"codellama/CodeLlama-7b-hf", | |
"lmsys/vicuna-7b-v1.5", | |
"lmsys/vicuna-7b-v1.1", | |
"EleutherAI/llemma_7b", | |
"LLM360/Amber", | |
] | |
elif model_arch == "olmo": | |
model_list = [ | |
"/scr/ahmedah/olmo/step1000_4B_tokens/seed_0_4B", | |
"/scr/ahmedah/olmo/step1000_4B_tokens/seed_42_4B", | |
] | |
tokenizer = AutoTokenizer.from_pretrained(model_list[0]) | |
tokenizer.pad_token = tokenizer.eos_token | |
test_cases = [ | |
{ | |
"test_name": folder_name, | |
"json_dir": f"/juice4/scr4/nlp/model-tracing/m2d2_s2orc/{folder_name}", | |
"save_dir": f"/juice4/scr4/nlp/model-tracing/m2d2_s2orc/results_{folder_name}", | |
"columns_ignored": ["text", "added", "id", "source", "timestamp", "subdomain"], | |
} | |
for folder_name in [ | |
"AI", | |
"CV", | |
"ET", | |
"IM", | |
"mtrl-sci", | |
"stat-mech", | |
"AR", | |
"CY", | |
"IR", | |
"NA", | |
"str-el", | |
"art", | |
"DB", | |
"FL", | |
"supr-con", | |
"CC", | |
"DC", | |
"GA", | |
"LG", | |
"phil", | |
"CE", | |
"dis-nn", | |
"GL", | |
"LO", | |
"CG", | |
"DL", | |
"GR", | |
"MA", | |
"quant-gas", | |
"CL", | |
"DM", | |
"GT", | |
"mes-hall", | |
"CO", | |
"DS", | |
"HC", | |
"MM", | |
"soft", | |
"CR", | |
"EP", | |
"HE", | |
"MS", | |
"SR", | |
] | |
] | |
for test_case in test_cases: | |
test_name = test_case["test_name"] | |
json_dir = test_case["json_dir"] | |
save_dir = test_case["save_dir"] | |
columns_ignored = ["text", "added", "id", "source", "subdomain"] | |
json_files = glob.glob(f"{json_dir}/*.json") | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
for json_file in json_files: | |
print(f"Processing {json_file}") | |
eval_dataset = load_dataset("json", data_files=json_file) | |
def tokenize_function(examples): | |
return tokenizer(examples["text"]) | |
tokenized_datasets = eval_dataset.map( | |
tokenize_function, batched=True, num_proc=4, remove_columns=columns_ignored | |
) | |
lm_datasets = tokenized_datasets.map( | |
group_texts, | |
batched=True, | |
batch_size=1000, | |
num_proc=8, | |
) | |
training_args = TrainingArguments( | |
output_dir="./hf_results", | |
per_device_eval_batch_size=15, | |
do_eval=True, | |
report_to=None, | |
dataloader_num_workers=8, | |
use_cpu=True, | |
) | |
alphas = [0.0, 0.3, 0.5, 0.7, 1.0] | |
initial_model = load_model(model_list[0]) | |
trainer = Trainer(model=initial_model, args=training_args, eval_dataset=lm_datasets) | |
eval_dataloader = trainer.get_test_dataloader(lm_datasets["train"]) | |
del initial_model | |
model_pairs = list(itertools.combinations(enumerate(model_list), 2)) | |
base_dir = f"{save_dir}/{test_name}" | |
os.makedirs(base_dir, exist_ok=True) | |
imgs_dir = os.path.join(base_dir, "imgs") | |
os.makedirs(imgs_dir, exist_ok=True) | |
csv_dir = os.path.join(base_dir, "csv") | |
os.makedirs(csv_dir, exist_ok=True) | |
current_model_a, current_model_b = None, None | |
current_model_a_name, current_model_b_name = None, None | |
for (idx_a, model_a_name), (idx_b, model_b_name) in tqdm( | |
model_pairs, desc="Model Interpolation" | |
): | |
if idx_a < idx_b: | |
perplexities = [] | |
if current_model_a is None or current_model_a_name != model_a_name: | |
if current_model_a is not None: | |
del current_model_a | |
torch.cuda.empty_cache() | |
current_model_a = load_model(model_a_name).to("cpu") | |
current_model_a_name = model_a_name | |
if current_model_b is None or current_model_b_name != model_b_name: | |
if current_model_b is not None: | |
del current_model_b | |
torch.cuda.empty_cache() | |
current_model_b = load_model(model_b_name).to("cpu") | |
current_model_b_name = model_b_name | |
with torch.no_grad(): | |
for alpha in tqdm( | |
alphas, | |
desc=f" \n Alpha Perplexities for {model_a_name} and {model_b_name}", | |
): | |
interpolated_model = interpolate_models( | |
current_model_a, current_model_b, alpha, model_arch=model_arch | |
) | |
interpolated_model = interpolated_model.half().to(device) | |
start_time = time.time() | |
losses = [] | |
for batch in tqdm(eval_dataloader, desc=f"\n Evaluating {alpha}"): | |
input_ids = batch["input_ids"].to(device) | |
attention_mask = batch["attention_mask"].to(device) | |
labels = batch["labels"].to(device) | |
outputs = interpolated_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
) | |
loss = outputs.loss | |
losses.append(loss.item()) | |
loss_mean = sum(losses) / len(losses) | |
print(f"Loss mean: {loss_mean}") | |
end_time = time.time() | |
execution_time = end_time - start_time | |
print(f"Execution time base: {execution_time} seconds") | |
perplexity = math.exp(loss_mean) | |
perplexities.append(perplexity) | |
interpolated_model.to("cpu") | |
del interpolated_model, input_ids, attention_mask, labels, outputs, loss | |
torch.cuda.empty_cache() | |
gc.collect() | |
model_a_name = model_a_name.split("/")[-1] | |
model_b_name = model_b_name.split("/")[-1] | |
json_filename = os.path.splitext(os.path.basename(json_file))[0] | |
csv_filename = f"{csv_dir}/perplexities_{json_filename}.csv" | |
csv_header = ["Model Pair"] + [f"Alpha {alpha}" for alpha in alphas] | |
if not os.path.exists(csv_filename): | |
with open(csv_filename, "w", newline="") as csvfile: | |
writer = csv.writer(csvfile) | |
writer.writerow(csv_header) | |
with open(csv_filename, "a", newline="") as csvfile: | |
writer = csv.writer(csvfile) | |
model_pair = f"{model_a_name} vs {model_b_name}" | |
row = [model_pair] + perplexities | |
writer.writerow(row) | |
plt.figure(figsize=(8, 6)) | |
plt.plot(alphas, perplexities) | |
plt.xlabel("Alpha") | |
plt.ylabel("Perplexity") | |
plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)") | |
plot_filename = ( | |
f"alpha_vs_perplexity_{model_a_name}_vs_{model_b_name}_{json_filename}.png" | |
) | |
plot_path = f"{imgs_dir}/{plot_filename}" | |
plt.savefig(plot_path, dpi=300, bbox_inches="tight") | |
plt.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Model Interpolation") | |
parser.add_argument( | |
"--model_arch", | |
choices=["llama", "olmo"], | |
default="llama", | |
help="default model architecture to use", | |
) | |
args = parser.parse_args() | |
main(args) | |