Ahmed Ahmed
Add model-tracing code for p-value computation (without binary files)
de071e9
import torch
import numpy as np
from tracing.perm.permute import permute_model
def main(base_model, ft_model, test_stat, num_perm, emb_dim=4096, mlp_dim=11008):
unperm_stat = test_stat(base_model, ft_model)
print(unperm_stat)
perm_stats = []
for i in range(num_perm):
mlp_permutation = torch.randperm(mlp_dim)
emb_permutation = torch.randperm(emb_dim)
permute_model(ft_model, mlp_permutation, emb_permutation)
perm_stat = test_stat(base_model, ft_model)
perm_stats.append(perm_stat)
print(i, perm_stat)
print(perm_stats)
exact = p_value_exact(unperm_stat, perm_stats.copy())
approx = p_value_approx(unperm_stat, perm_stats.copy())
print(exact, approx)
return exact, approx, unperm_stat, perm_stats
def p_value_exact(unpermuted, permuted):
count = 0
for a in permuted:
if a < unpermuted:
count += 1
return round((count + 1) / (len(permuted) + 1), 2)
def p_value_approx(unpermuted, permuted):
mean = sum(permuted) / len(permuted)
std = np.std(permuted)
zscore = (unpermuted - mean) / std
return zscore