model_trace / src /populate.py
Ahmed Ahmed
RETRY
63076cf
import pandas as pd
import sys
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
try:
sys.stderr.write("\n=== GET_LEADERBOARD_DF DEBUG ===\n")
sys.stderr.write("Starting leaderboard creation...\n")
sys.stderr.write(f"Looking for results in: {results_path}\n")
sys.stderr.write(f"Expected columns: {cols}\n")
sys.stderr.write(f"Benchmark columns: {benchmark_cols}\n")
sys.stderr.flush()
raw_data = get_raw_eval_results(results_path)
sys.stderr.write(f"\nFound {len(raw_data)} raw results\n")
sys.stderr.flush()
if not raw_data:
sys.stderr.write("No raw data found, creating empty DataFrame\n")
sys.stderr.flush()
return create_empty_dataframe(cols, benchmark_cols)
all_data_json = []
for i, v in enumerate(raw_data):
try:
sys.stderr.write(f"Processing result {i+1}/{len(raw_data)}: {v.full_model}\n")
sys.stderr.flush()
data_dict = v.to_dict()
# Validate the data_dict has required columns
missing_cols = [col for col in cols if col not in data_dict]
if missing_cols:
sys.stderr.write(f"WARNING: Result for {v.full_model} missing columns: {missing_cols}\n")
# Add missing columns with default values
for col in missing_cols:
if col in benchmark_cols:
data_dict[col] = 0.0
elif col == AutoEvalColumn.model_type_symbol.name:
data_dict[col] = "?"
else:
data_dict[col] = ""
sys.stderr.flush()
all_data_json.append(data_dict)
sys.stderr.write(f"Successfully processed result {i+1}/{len(raw_data)}: {v.full_model}\n")
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"Error processing result {i+1}/{len(raw_data)} ({v.full_model}): {e}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
sys.stderr.flush()
continue
sys.stderr.write(f"\nConverted to {len(all_data_json)} JSON records\n")
sys.stderr.flush()
if not all_data_json:
sys.stderr.write("No valid JSON records, creating empty DataFrame\n")
sys.stderr.flush()
return create_empty_dataframe(cols, benchmark_cols)
if all_data_json:
sys.stderr.write("Sample record keys: " + str(list(all_data_json[0].keys())) + "\n")
sys.stderr.flush()
try:
df = pd.DataFrame.from_records(all_data_json)
sys.stderr.write("\nCreated DataFrame with columns: " + str(df.columns.tolist()) + "\n")
sys.stderr.write("DataFrame shape: " + str(df.shape) + "\n")
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"Error creating DataFrame from records: {e}\n")
sys.stderr.flush()
return create_empty_dataframe(cols, benchmark_cols)
try:
# No sorting needed - we only have p-values
sys.stderr.write("\nNo sorting applied - only p-values\n")
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"\nError with DataFrame: {e}\n")
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
sys.stderr.flush()
try:
# Ensure all required columns exist before selecting
for col in cols:
if col not in df.columns:
sys.stderr.write(f"Adding missing column during selection: {col}\n")
if col in benchmark_cols or col == AutoEvalColumn.average.name:
df[col] = 0.0
else:
df[col] = ""
sys.stderr.flush()
df = df[cols].round(decimals=2)
sys.stderr.write("\nSelected and rounded columns\n")
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"\nError selecting columns: {e}\n")
sys.stderr.write("Requested columns: " + str(cols) + "\n")
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
sys.stderr.flush()
return create_empty_dataframe(cols, benchmark_cols)
# No filtering needed - we only have p-values
sys.stderr.write("\nFinal DataFrame shape (no filtering): " + str(df.shape) + "\n")
sys.stderr.write("Final columns: " + str(df.columns.tolist()) + "\n")
sys.stderr.flush()
# Final validation
if df is None or df.empty:
sys.stderr.write("Final DataFrame is None or empty, returning fallback\n")
sys.stderr.flush()
return create_empty_dataframe(cols, benchmark_cols)
sys.stderr.write(f"=== FINAL RESULT: DataFrame with {len(df)} rows and {len(df.columns)} columns ===\n")
sys.stderr.flush()
return df
except Exception as e:
sys.stderr.write(f"\nCRITICAL ERROR in get_leaderboard_df: {e}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
sys.stderr.flush()
# Always return a valid DataFrame, never None
return create_empty_dataframe(cols, benchmark_cols)
def create_empty_dataframe(cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Create a valid empty DataFrame with all required columns"""
import sys
sys.stderr.write("Creating empty fallback DataFrame...\n")
sys.stderr.flush()
empty_df = pd.DataFrame(columns=cols)
# Ensure correct column types
for col in cols:
if col in benchmark_cols:
empty_df[col] = pd.Series(dtype=float)
else:
empty_df[col] = pd.Series(dtype=str)
sys.stderr.write(f"Empty DataFrame created with columns: {empty_df.columns.tolist()}\n")
sys.stderr.flush()
return empty_df