Ahmed Ahmed commited on
Commit
536d515
·
1 Parent(s): ce8066d

consolidate

Browse files
app.py CHANGED
@@ -41,50 +41,100 @@ def init_leaderboard(dataframe):
41
  )
42
 
43
  def refresh_leaderboard():
44
- """Refresh leaderboard data from disk"""
45
- print("\n=== Refreshing Leaderboard ===", flush=True)
 
46
  try:
47
- # Download latest results
48
- print("Downloading latest results...", flush=True)
49
- snapshot_download(
50
- repo_id=RESULTS_REPO,
51
- local_dir=EVAL_RESULTS_PATH,
52
- repo_type="dataset",
53
- tqdm_class=None,
54
- etag_timeout=30,
55
- token=TOKEN
56
- )
57
- print("Download complete", flush=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  except Exception as e:
59
- print(f"Error refreshing results: {e}", flush=True)
60
-
61
- # Get fresh leaderboard data
62
- print("Getting fresh leaderboard data...", flush=True)
63
- df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
64
- print(f"Got DataFrame with shape: {df.shape}", flush=True)
65
- return init_leaderboard(df)
66
 
67
  def run_perplexity_test(model_name, revision, precision):
68
  """Run perplexity evaluation on demand."""
69
- print(f"\n=== Running Perplexity Test ===", flush=True)
70
- print(f"Model: {model_name}", flush=True)
71
- print(f"Revision: {revision}", flush=True)
72
- print(f"Precision: {precision}", flush=True)
73
 
74
  if not model_name:
75
  return "Please enter a model name.", None
76
 
77
- success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
78
- print(f"Evaluation result - Success: {success}, Result: {result}", flush=True)
79
-
80
- if success:
81
- # Get updated leaderboard
82
- print("Refreshing leaderboard...", flush=True)
83
- new_leaderboard = refresh_leaderboard()
84
- print("Leaderboard refresh complete", flush=True)
85
- return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}", new_leaderboard
86
- else:
87
- return f"❌ Evaluation failed: {result}", None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  # Initialize results repository and directory
90
  try:
@@ -131,20 +181,30 @@ with demo:
131
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
132
 
133
  with gr.TabItem("🧪 Test Model", elem_id="test-model-tab", id=2):
 
 
134
  with gr.Row():
135
  with gr.Column():
136
- model_name = gr.Textbox(label="Model name", placeholder="org/model-name")
137
  revision = gr.Textbox(label="Revision", placeholder="main", value="main")
138
  precision = gr.Dropdown(
139
  choices=["float16", "bfloat16"],
140
  label="Precision",
141
  value="float16"
142
  )
 
143
 
144
  with gr.Column():
145
  test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
146
  result = gr.Markdown()
147
 
 
 
 
 
 
 
 
148
  test_button.click(
149
  run_perplexity_test,
150
  [model_name, revision, precision],
 
41
  )
42
 
43
  def refresh_leaderboard():
44
+ import sys
45
+ import traceback
46
+
47
  try:
48
+ sys.stderr.write("Refreshing leaderboard data...\n")
49
+ sys.stderr.flush()
50
+
51
+ # Get fresh leaderboard data
52
+ df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
53
+ sys.stderr.write(f"Got DataFrame with shape: {df.shape}\n")
54
+ sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n")
55
+ sys.stderr.flush()
56
+
57
+ # Check if DataFrame is valid for leaderboard
58
+ if df is None:
59
+ sys.stderr.write("DataFrame is None, cannot create leaderboard\n")
60
+ sys.stderr.flush()
61
+ raise ValueError("DataFrame is None")
62
+
63
+ if df.empty:
64
+ sys.stderr.write("DataFrame is empty, creating minimal valid DataFrame\n")
65
+ sys.stderr.flush()
66
+ # Create a minimal valid DataFrame that won't crash the leaderboard
67
+ import pandas as pd
68
+ empty_df = pd.DataFrame(columns=COLS)
69
+ # Add one dummy row to prevent leaderboard component from crashing
70
+ dummy_row = {col: 0 if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name else "" for col in COLS}
71
+ dummy_row[AutoEvalColumn.model.name] = "No models evaluated yet"
72
+ dummy_row[AutoEvalColumn.model_type_symbol.name] = "?"
73
+ empty_df = pd.DataFrame([dummy_row])
74
+ return init_leaderboard(empty_df)
75
+
76
+ sys.stderr.write("Creating leaderboard with valid DataFrame\n")
77
+ sys.stderr.flush()
78
+ return init_leaderboard(df)
79
+
80
  except Exception as e:
81
+ error_msg = str(e)
82
+ traceback_str = traceback.format_exc()
83
+ sys.stderr.write(f"Error in refresh_leaderboard: {error_msg}\n")
84
+ sys.stderr.write(f"Traceback: {traceback_str}\n")
85
+ sys.stderr.flush()
86
+ raise
 
87
 
88
  def run_perplexity_test(model_name, revision, precision):
89
  """Run perplexity evaluation on demand."""
90
+ import sys
91
+ import traceback
 
 
92
 
93
  if not model_name:
94
  return "Please enter a model name.", None
95
 
96
+ try:
97
+ # Use stderr for more reliable logging in HF Spaces
98
+ sys.stderr.write(f"\n=== Running Perplexity Test ===\n")
99
+ sys.stderr.write(f"Model: {model_name}\n")
100
+ sys.stderr.write(f"Revision: {revision}\n")
101
+ sys.stderr.write(f"Precision: {precision}\n")
102
+ sys.stderr.flush()
103
+
104
+ success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
105
+ sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
106
+ sys.stderr.flush()
107
+
108
+ if success:
109
+ try:
110
+ # Try to refresh leaderboard
111
+ sys.stderr.write("Attempting to refresh leaderboard...\n")
112
+ sys.stderr.flush()
113
+
114
+ new_leaderboard = refresh_leaderboard()
115
+ sys.stderr.write("Leaderboard refresh successful\n")
116
+ sys.stderr.flush()
117
+
118
+ return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved to leaderboard.", new_leaderboard
119
+ except Exception as refresh_error:
120
+ # If leaderboard refresh fails, still show success but don't update leaderboard
121
+ error_msg = str(refresh_error)
122
+ traceback_str = traceback.format_exc()
123
+ sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n")
124
+ sys.stderr.write(f"Traceback: {traceback_str}\n")
125
+ sys.stderr.flush()
126
+
127
+ return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None
128
+ else:
129
+ return f"❌ Evaluation failed: {result}", None
130
+
131
+ except Exception as e:
132
+ error_msg = str(e)
133
+ traceback_str = traceback.format_exc()
134
+ sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
135
+ sys.stderr.write(f"Traceback: {traceback_str}\n")
136
+ sys.stderr.flush()
137
+ return f"❌ Critical error: {error_msg}", None
138
 
139
  # Initialize results repository and directory
140
  try:
 
181
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
182
 
183
  with gr.TabItem("🧪 Test Model", elem_id="test-model-tab", id=2):
184
+ gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
185
+
186
  with gr.Row():
187
  with gr.Column():
188
+ model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
189
  revision = gr.Textbox(label="Revision", placeholder="main", value="main")
190
  precision = gr.Dropdown(
191
  choices=["float16", "bfloat16"],
192
  label="Precision",
193
  value="float16"
194
  )
195
+ debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
196
 
197
  with gr.Column():
198
  test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
199
  result = gr.Markdown()
200
 
201
+ gr.Markdown("""
202
+ ### Tips:
203
+ - Check stderr logs in HF Spaces for detailed debugging information
204
+ - If evaluation succeeds but leaderboard doesn't update, try refreshing the page
205
+ - Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`
206
+ """)
207
+
208
  test_button.click(
209
  run_perplexity_test,
210
  [model_name, revision, precision],
src/evaluation/dynamic_eval.py CHANGED
@@ -1,5 +1,6 @@
1
  import json
2
  import os
 
3
  from datetime import datetime
4
  from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
5
  from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
@@ -9,11 +10,20 @@ def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"
9
  Run perplexity evaluation and save results.
10
  """
11
  try:
 
 
 
12
  # Run evaluation
 
 
13
  perplexity_score = evaluate_perplexity(model_name, revision)
 
 
14
 
15
  # Create result structure
16
  result = create_perplexity_result(model_name, revision, precision, perplexity_score)
 
 
17
 
18
  # Save result file
19
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
@@ -25,20 +35,39 @@ def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"
25
  os.makedirs(result_dir, exist_ok=True)
26
 
27
  result_path = os.path.join(result_dir, result_filename)
 
 
28
 
29
  with open(result_path, "w") as f:
30
  json.dump(result, f, indent=2)
31
 
 
 
 
32
  # Upload to Hugging Face dataset
33
- API.upload_file(
34
- path_or_fileobj=result_path,
35
- path_in_repo=result_path.split("eval-results/")[1],
36
- repo_id=RESULTS_REPO,
37
- repo_type="dataset",
38
- commit_message=f"Add perplexity results for {model_name}",
39
- )
 
 
 
 
 
 
 
 
 
 
40
 
41
  return True, perplexity_score
42
 
43
  except Exception as e:
 
 
 
 
44
  return False, str(e)
 
1
  import json
2
  import os
3
+ import sys
4
  from datetime import datetime
5
  from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
6
  from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
 
10
  Run perplexity evaluation and save results.
11
  """
12
  try:
13
+ sys.stderr.write(f"Starting dynamic evaluation for {model_name}\n")
14
+ sys.stderr.flush()
15
+
16
  # Run evaluation
17
+ sys.stderr.write("Running perplexity evaluation...\n")
18
+ sys.stderr.flush()
19
  perplexity_score = evaluate_perplexity(model_name, revision)
20
+ sys.stderr.write(f"Perplexity evaluation completed: {perplexity_score}\n")
21
+ sys.stderr.flush()
22
 
23
  # Create result structure
24
  result = create_perplexity_result(model_name, revision, precision, perplexity_score)
25
+ sys.stderr.write(f"Created result structure: {result}\n")
26
+ sys.stderr.flush()
27
 
28
  # Save result file
29
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 
35
  os.makedirs(result_dir, exist_ok=True)
36
 
37
  result_path = os.path.join(result_dir, result_filename)
38
+ sys.stderr.write(f"Saving result to: {result_path}\n")
39
+ sys.stderr.flush()
40
 
41
  with open(result_path, "w") as f:
42
  json.dump(result, f, indent=2)
43
 
44
+ sys.stderr.write("Result file saved locally\n")
45
+ sys.stderr.flush()
46
+
47
  # Upload to Hugging Face dataset
48
+ try:
49
+ sys.stderr.write(f"Uploading to HF dataset: {RESULTS_REPO}\n")
50
+ sys.stderr.flush()
51
+
52
+ API.upload_file(
53
+ path_or_fileobj=result_path,
54
+ path_in_repo=result_path.split("eval-results/")[1],
55
+ repo_id=RESULTS_REPO,
56
+ repo_type="dataset",
57
+ commit_message=f"Add perplexity results for {model_name}",
58
+ )
59
+ sys.stderr.write("Upload completed successfully\n")
60
+ sys.stderr.flush()
61
+ except Exception as upload_error:
62
+ sys.stderr.write(f"Upload failed: {upload_error}\n")
63
+ sys.stderr.flush()
64
+ # Don't fail the whole process if upload fails
65
 
66
  return True, perplexity_score
67
 
68
  except Exception as e:
69
+ import traceback
70
+ sys.stderr.write(f"Error in run_dynamic_perplexity_eval: {e}\n")
71
+ sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
72
+ sys.stderr.flush()
73
  return False, str(e)
src/evaluation/perplexity_eval.py CHANGED
@@ -1,4 +1,5 @@
1
  import torch
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import numpy as np
4
 
@@ -15,38 +16,72 @@ def evaluate_perplexity(model_name, revision="main", test_text=None):
15
  float: Perplexity score (lower is better)
16
  """
17
 
18
- # Default test text if none provided
19
- if test_text is None:
20
- test_text = """Artificial intelligence has transformed the way we live and work, bringing both opportunities and challenges.
21
- From autonomous vehicles to language models that can engage in human-like conversation, AI technologies are becoming increasingly
22
- sophisticated. However, with this advancement comes the responsibility to ensure these systems are developed and deployed ethically,
23
- with careful consideration for privacy, fairness, and transparency. The future of AI will likely depend on how well we balance innovation
24
- with these important social considerations."""
25
-
26
- # Load model and tokenizer
27
- model = AutoModelForCausalLM.from_pretrained(
28
- model_name,
29
- revision=revision,
30
- torch_dtype=torch.float16,
31
- device_map="auto"
32
- )
33
- tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
34
-
35
- # Tokenize the text
36
- inputs = tokenizer(test_text, return_tensors="pt")
37
-
38
- # Move to same device as model
39
- inputs = {k: v.to(model.device) for k, v in inputs.items()}
40
-
41
- # Calculate loss
42
- with torch.no_grad():
43
- outputs = model(**inputs, labels=inputs["input_ids"])
44
- loss = outputs.loss
45
-
46
- # Calculate perplexity
47
- perplexity = torch.exp(loss).item()
48
-
49
- return perplexity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  def create_perplexity_result(model_name, revision, precision, perplexity_score):
52
  """
 
1
  import torch
2
+ import sys
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
  import numpy as np
5
 
 
16
  float: Perplexity score (lower is better)
17
  """
18
 
19
+ try:
20
+ sys.stderr.write(f"Loading model: {model_name} (revision: {revision})\n")
21
+ sys.stderr.flush()
22
+
23
+ # Default test text if none provided
24
+ if test_text is None:
25
+ test_text = """Artificial intelligence has transformed the way we live and work, bringing both opportunities and challenges.
26
+ From autonomous vehicles to language models that can engage in human-like conversation, AI technologies are becoming increasingly
27
+ sophisticated. However, with this advancement comes the responsibility to ensure these systems are developed and deployed ethically,
28
+ with careful consideration for privacy, fairness, and transparency. The future of AI will likely depend on how well we balance innovation
29
+ with these important social considerations."""
30
+
31
+ sys.stderr.write("Loading tokenizer...\n")
32
+ sys.stderr.flush()
33
+ # Load tokenizer first
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
35
+ sys.stderr.write("Tokenizer loaded successfully\n")
36
+ sys.stderr.flush()
37
+
38
+ sys.stderr.write("Loading model...\n")
39
+ sys.stderr.flush()
40
+ # Load model
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ model_name,
43
+ revision=revision,
44
+ torch_dtype=torch.float16,
45
+ device_map="auto"
46
+ )
47
+ sys.stderr.write("Model loaded successfully\n")
48
+ sys.stderr.flush()
49
+
50
+ sys.stderr.write("Tokenizing input text...\n")
51
+ sys.stderr.flush()
52
+ # Tokenize the text
53
+ inputs = tokenizer(test_text, return_tensors="pt")
54
+ sys.stderr.write(f"Tokenized input shape: {inputs['input_ids'].shape}\n")
55
+ sys.stderr.flush()
56
+
57
+ # Move to same device as model
58
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
59
+ sys.stderr.write(f"Moved inputs to device: {model.device}\n")
60
+ sys.stderr.flush()
61
+
62
+ sys.stderr.write("Running forward pass...\n")
63
+ sys.stderr.flush()
64
+ # Calculate loss
65
+ with torch.no_grad():
66
+ outputs = model(**inputs, labels=inputs["input_ids"])
67
+ loss = outputs.loss
68
+
69
+ sys.stderr.write(f"Calculated loss: {loss.item()}\n")
70
+ sys.stderr.flush()
71
+
72
+ # Calculate perplexity
73
+ perplexity = torch.exp(loss).item()
74
+ sys.stderr.write(f"Final perplexity: {perplexity}\n")
75
+ sys.stderr.flush()
76
+
77
+ return perplexity
78
+
79
+ except Exception as e:
80
+ import traceback
81
+ sys.stderr.write(f"Error in evaluate_perplexity: {e}\n")
82
+ sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
83
+ sys.stderr.flush()
84
+ raise
85
 
86
  def create_perplexity_result(model_name, revision, precision, perplexity_score):
87
  """
src/leaderboard/read_evals.py CHANGED
@@ -76,8 +76,11 @@ class EvalResult:
76
 
77
  def to_dict(self):
78
  """Converts the Eval Result to a dict compatible with our dataframe display"""
79
- print(f"\nProcessing result for model: {self.full_model}", flush=True)
80
- print(f"Raw results: {self.results}", flush=True)
 
 
 
81
 
82
  # Calculate average, handling perplexity (lower is better)
83
  scores = []
@@ -93,7 +96,8 @@ class EvalResult:
93
  scores.append(score)
94
 
95
  average = sum(scores) / len(scores) if scores else 0
96
- print(f"Calculated average score: {average}", flush=True)
 
97
 
98
  data_dict = {
99
  "eval_name": self.eval_name, # not a column, just a save name,
@@ -115,17 +119,24 @@ class EvalResult:
115
  # Add perplexity score with the exact column name from Tasks
116
  if perplexity_score is not None:
117
  data_dict[Tasks.task0.value.col_name] = perplexity_score
118
- print(f"Added perplexity score {perplexity_score} under column {Tasks.task0.value.col_name}", flush=True)
 
119
  else:
120
  data_dict[Tasks.task0.value.col_name] = None
121
- print(f"No perplexity score found for column {Tasks.task0.value.col_name}", flush=True)
 
122
 
123
- print(f"Final data dict keys: {list(data_dict.keys())}", flush=True)
 
124
  return data_dict
125
 
126
  def get_raw_eval_results(results_path: str) -> list[EvalResult]:
127
  """From the path of the results folder root, extract all perplexity results"""
128
- print(f"\nSearching for result files in: {results_path}", flush=True)
 
 
 
 
129
  model_result_filepaths = []
130
 
131
  for root, _, files in os.walk(results_path):
@@ -136,39 +147,55 @@ def get_raw_eval_results(results_path: str) -> list[EvalResult]:
136
  for file in files:
137
  model_result_filepaths.append(os.path.join(root, file))
138
 
139
- print(f"Found {len(model_result_filepaths)} result files", flush=True)
 
140
 
141
  eval_results = {}
142
  for model_result_filepath in model_result_filepaths:
143
  try:
144
- print(f"\nProcessing file: {model_result_filepath}", flush=True)
 
145
  # Creation of result
146
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
147
- print(f"Created result object for: {eval_result.full_model}", flush=True)
 
148
 
149
  # Store results of same eval together
150
  eval_name = eval_result.eval_name
151
  if eval_name in eval_results.keys():
152
  eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
153
- print(f"Updated existing result for {eval_name}", flush=True)
 
154
  else:
155
  eval_results[eval_name] = eval_result
156
- print(f"Added new result for {eval_name}", flush=True)
 
157
  except Exception as e:
158
- print(f"Error processing result file {model_result_filepath}: {e}", flush=True)
 
 
 
159
  continue
160
 
161
  results = []
162
- print(f"\nProcessing {len(eval_results)} evaluation results", flush=True)
 
 
163
  for v in eval_results.values():
164
  try:
165
- print(f"\nConverting result to dict for: {v.full_model}", flush=True)
 
166
  v.to_dict() # we test if the dict version is complete
167
  results.append(v)
168
- print("Successfully converted and added result", flush=True)
 
169
  except KeyError as e:
170
- print(f"Error converting result to dict: {e}", flush=True)
 
 
 
171
  continue
172
 
173
- print(f"\nReturning {len(results)} processed results", flush=True)
 
174
  return results
 
76
 
77
  def to_dict(self):
78
  """Converts the Eval Result to a dict compatible with our dataframe display"""
79
+ import sys
80
+
81
+ sys.stderr.write(f"\nProcessing result for model: {self.full_model}\n")
82
+ sys.stderr.write(f"Raw results: {self.results}\n")
83
+ sys.stderr.flush()
84
 
85
  # Calculate average, handling perplexity (lower is better)
86
  scores = []
 
96
  scores.append(score)
97
 
98
  average = sum(scores) / len(scores) if scores else 0
99
+ sys.stderr.write(f"Calculated average score: {average}\n")
100
+ sys.stderr.flush()
101
 
102
  data_dict = {
103
  "eval_name": self.eval_name, # not a column, just a save name,
 
119
  # Add perplexity score with the exact column name from Tasks
120
  if perplexity_score is not None:
121
  data_dict[Tasks.task0.value.col_name] = perplexity_score
122
+ sys.stderr.write(f"Added perplexity score {perplexity_score} under column {Tasks.task0.value.col_name}\n")
123
+ sys.stderr.flush()
124
  else:
125
  data_dict[Tasks.task0.value.col_name] = None
126
+ sys.stderr.write(f"No perplexity score found for column {Tasks.task0.value.col_name}\n")
127
+ sys.stderr.flush()
128
 
129
+ sys.stderr.write(f"Final data dict keys: {list(data_dict.keys())}\n")
130
+ sys.stderr.flush()
131
  return data_dict
132
 
133
  def get_raw_eval_results(results_path: str) -> list[EvalResult]:
134
  """From the path of the results folder root, extract all perplexity results"""
135
+ import sys
136
+
137
+ sys.stderr.write(f"\nSearching for result files in: {results_path}\n")
138
+ sys.stderr.flush()
139
+
140
  model_result_filepaths = []
141
 
142
  for root, _, files in os.walk(results_path):
 
147
  for file in files:
148
  model_result_filepaths.append(os.path.join(root, file))
149
 
150
+ sys.stderr.write(f"Found {len(model_result_filepaths)} result files\n")
151
+ sys.stderr.flush()
152
 
153
  eval_results = {}
154
  for model_result_filepath in model_result_filepaths:
155
  try:
156
+ sys.stderr.write(f"\nProcessing file: {model_result_filepath}\n")
157
+ sys.stderr.flush()
158
  # Creation of result
159
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
160
+ sys.stderr.write(f"Created result object for: {eval_result.full_model}\n")
161
+ sys.stderr.flush()
162
 
163
  # Store results of same eval together
164
  eval_name = eval_result.eval_name
165
  if eval_name in eval_results.keys():
166
  eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
167
+ sys.stderr.write(f"Updated existing result for {eval_name}\n")
168
+ sys.stderr.flush()
169
  else:
170
  eval_results[eval_name] = eval_result
171
+ sys.stderr.write(f"Added new result for {eval_name}\n")
172
+ sys.stderr.flush()
173
  except Exception as e:
174
+ sys.stderr.write(f"Error processing result file {model_result_filepath}: {e}\n")
175
+ import traceback
176
+ sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
177
+ sys.stderr.flush()
178
  continue
179
 
180
  results = []
181
+ sys.stderr.write(f"\nProcessing {len(eval_results)} evaluation results\n")
182
+ sys.stderr.flush()
183
+
184
  for v in eval_results.values():
185
  try:
186
+ sys.stderr.write(f"\nConverting result to dict for: {v.full_model}\n")
187
+ sys.stderr.flush()
188
  v.to_dict() # we test if the dict version is complete
189
  results.append(v)
190
+ sys.stderr.write("Successfully converted and added result\n")
191
+ sys.stderr.flush()
192
  except KeyError as e:
193
+ sys.stderr.write(f"Error converting result to dict: {e}\n")
194
+ import traceback
195
+ sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
196
+ sys.stderr.flush()
197
  continue
198
 
199
+ sys.stderr.write(f"\nReturning {len(results)} processed results\n")
200
+ sys.stderr.flush()
201
  return results
src/populate.py CHANGED
@@ -1,60 +1,97 @@
1
  import pandas as pd
 
2
  from src.display.formatting import has_no_nan_values, make_clickable_model
3
  from src.display.utils import AutoEvalColumn
4
  from src.leaderboard.read_evals import get_raw_eval_results
5
 
6
  def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
7
  """Creates a dataframe from all the individual experiment results"""
8
- print("\n=== Starting leaderboard creation ===", flush=True)
9
- print(f"Looking for results in: {results_path}", flush=True)
10
- print(f"Expected columns: {cols}", flush=True)
11
- print(f"Benchmark columns: {benchmark_cols}", flush=True)
 
 
12
 
13
- raw_data = get_raw_eval_results(results_path)
14
- print(f"\nFound {len(raw_data)} raw results", flush=True)
 
15
 
16
- all_data_json = [v.to_dict() for v in raw_data]
17
- print(f"\nConverted to {len(all_data_json)} JSON records", flush=True)
18
- if all_data_json:
19
- print("Sample record keys:", list(all_data_json[0].keys()), flush=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- if not all_data_json:
22
- print("\nNo data found, creating empty DataFrame", flush=True)
23
- empty_df = pd.DataFrame(columns=cols)
24
- # Ensure correct column types
25
- empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
26
- for col in benchmark_cols:
27
- empty_df[col] = pd.Series(dtype=float)
28
- return empty_df
 
29
 
30
- df = pd.DataFrame.from_records(all_data_json)
31
- print("\nCreated DataFrame with columns:", df.columns.tolist(), flush=True)
32
- print("DataFrame shape:", df.shape, flush=True)
 
33
 
34
- try:
35
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
36
- print("\nSorted DataFrame by average", flush=True)
37
- except KeyError as e:
38
- print(f"\nError sorting DataFrame: {e}", flush=True)
39
- print("Available columns:", df.columns.tolist(), flush=True)
 
 
40
 
41
- try:
42
- df = df[cols].round(decimals=2)
43
- print("\nSelected and rounded columns", flush=True)
44
- except KeyError as e:
45
- print(f"\nError selecting columns: {e}", flush=True)
46
- print("Requested columns:", cols, flush=True)
47
- print("Available columns:", df.columns.tolist(), flush=True)
48
- # Create empty DataFrame with correct structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  empty_df = pd.DataFrame(columns=cols)
50
  empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
51
  for col in benchmark_cols:
52
  empty_df[col] = pd.Series(dtype=float)
53
  return empty_df
54
-
55
- # filter out if perplexity hasn't been evaluated
56
- df = df[has_no_nan_values(df, benchmark_cols)]
57
- print("\nFinal DataFrame shape after filtering:", df.shape, flush=True)
58
- print("Final columns:", df.columns.tolist(), flush=True)
59
-
60
- return df
 
1
  import pandas as pd
2
+ import sys
3
  from src.display.formatting import has_no_nan_values, make_clickable_model
4
  from src.display.utils import AutoEvalColumn
5
  from src.leaderboard.read_evals import get_raw_eval_results
6
 
7
  def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
8
  """Creates a dataframe from all the individual experiment results"""
9
+ try:
10
+ sys.stderr.write("\n=== Starting leaderboard creation ===\n")
11
+ sys.stderr.write(f"Looking for results in: {results_path}\n")
12
+ sys.stderr.write(f"Expected columns: {cols}\n")
13
+ sys.stderr.write(f"Benchmark columns: {benchmark_cols}\n")
14
+ sys.stderr.flush()
15
 
16
+ raw_data = get_raw_eval_results(results_path)
17
+ sys.stderr.write(f"\nFound {len(raw_data)} raw results\n")
18
+ sys.stderr.flush()
19
 
20
+ all_data_json = []
21
+ for i, v in enumerate(raw_data):
22
+ try:
23
+ data_dict = v.to_dict()
24
+ all_data_json.append(data_dict)
25
+ sys.stderr.write(f"Successfully processed result {i+1}/{len(raw_data)}: {v.full_model}\n")
26
+ sys.stderr.flush()
27
+ except Exception as e:
28
+ sys.stderr.write(f"Error processing result {i+1}/{len(raw_data)} ({v.full_model}): {e}\n")
29
+ sys.stderr.flush()
30
+ continue
31
+
32
+ sys.stderr.write(f"\nConverted to {len(all_data_json)} JSON records\n")
33
+ sys.stderr.flush()
34
+
35
+ if all_data_json:
36
+ sys.stderr.write("Sample record keys: " + str(list(all_data_json[0].keys())) + "\n")
37
+ sys.stderr.flush()
38
 
39
+ if not all_data_json:
40
+ sys.stderr.write("\nNo data found, creating empty DataFrame\n")
41
+ sys.stderr.flush()
42
+ empty_df = pd.DataFrame(columns=cols)
43
+ # Ensure correct column types
44
+ empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
45
+ for col in benchmark_cols:
46
+ empty_df[col] = pd.Series(dtype=float)
47
+ return empty_df
48
 
49
+ df = pd.DataFrame.from_records(all_data_json)
50
+ sys.stderr.write("\nCreated DataFrame with columns: " + str(df.columns.tolist()) + "\n")
51
+ sys.stderr.write("DataFrame shape: " + str(df.shape) + "\n")
52
+ sys.stderr.flush()
53
 
54
+ try:
55
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
56
+ sys.stderr.write("\nSorted DataFrame by average\n")
57
+ sys.stderr.flush()
58
+ except KeyError as e:
59
+ sys.stderr.write(f"\nError sorting DataFrame: {e}\n")
60
+ sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
61
+ sys.stderr.flush()
62
 
63
+ try:
64
+ df = df[cols].round(decimals=2)
65
+ sys.stderr.write("\nSelected and rounded columns\n")
66
+ sys.stderr.flush()
67
+ except KeyError as e:
68
+ sys.stderr.write(f"\nError selecting columns: {e}\n")
69
+ sys.stderr.write("Requested columns: " + str(cols) + "\n")
70
+ sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
71
+ sys.stderr.flush()
72
+ # Create empty DataFrame with correct structure
73
+ empty_df = pd.DataFrame(columns=cols)
74
+ empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
75
+ for col in benchmark_cols:
76
+ empty_df[col] = pd.Series(dtype=float)
77
+ return empty_df
78
+
79
+ # filter out if perplexity hasn't been evaluated
80
+ df = df[has_no_nan_values(df, benchmark_cols)]
81
+ sys.stderr.write("\nFinal DataFrame shape after filtering: " + str(df.shape) + "\n")
82
+ sys.stderr.write("Final columns: " + str(df.columns.tolist()) + "\n")
83
+ sys.stderr.flush()
84
+
85
+ return df
86
+
87
+ except Exception as e:
88
+ sys.stderr.write(f"\nCritical error in get_leaderboard_df: {e}\n")
89
+ import traceback
90
+ sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
91
+ sys.stderr.flush()
92
+ # Return empty DataFrame as fallback
93
  empty_df = pd.DataFrame(columns=cols)
94
  empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
95
  for col in benchmark_cols:
96
  empty_df[col] = pd.Series(dtype=float)
97
  return empty_df