Spaces:
Runtime error
Runtime error
Ahmed Ahmed
commited on
Commit
·
536d515
1
Parent(s):
ce8066d
consolidate
Browse files- app.py +96 -36
- src/evaluation/dynamic_eval.py +36 -7
- src/evaluation/perplexity_eval.py +67 -32
- src/leaderboard/read_evals.py +45 -18
- src/populate.py +79 -42
app.py
CHANGED
@@ -41,50 +41,100 @@ def init_leaderboard(dataframe):
|
|
41 |
)
|
42 |
|
43 |
def refresh_leaderboard():
|
44 |
-
|
45 |
-
|
|
|
46 |
try:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
return init_leaderboard(df)
|
66 |
|
67 |
def run_perplexity_test(model_name, revision, precision):
|
68 |
"""Run perplexity evaluation on demand."""
|
69 |
-
|
70 |
-
|
71 |
-
print(f"Revision: {revision}", flush=True)
|
72 |
-
print(f"Precision: {precision}", flush=True)
|
73 |
|
74 |
if not model_name:
|
75 |
return "Please enter a model name.", None
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Initialize results repository and directory
|
90 |
try:
|
@@ -131,20 +181,30 @@ with demo:
|
|
131 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
132 |
|
133 |
with gr.TabItem("🧪 Test Model", elem_id="test-model-tab", id=2):
|
|
|
|
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
-
model_name = gr.Textbox(label="Model name", placeholder="
|
137 |
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
|
138 |
precision = gr.Dropdown(
|
139 |
choices=["float16", "bfloat16"],
|
140 |
label="Precision",
|
141 |
value="float16"
|
142 |
)
|
|
|
143 |
|
144 |
with gr.Column():
|
145 |
test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
|
146 |
result = gr.Markdown()
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
test_button.click(
|
149 |
run_perplexity_test,
|
150 |
[model_name, revision, precision],
|
|
|
41 |
)
|
42 |
|
43 |
def refresh_leaderboard():
|
44 |
+
import sys
|
45 |
+
import traceback
|
46 |
+
|
47 |
try:
|
48 |
+
sys.stderr.write("Refreshing leaderboard data...\n")
|
49 |
+
sys.stderr.flush()
|
50 |
+
|
51 |
+
# Get fresh leaderboard data
|
52 |
+
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
+
sys.stderr.write(f"Got DataFrame with shape: {df.shape}\n")
|
54 |
+
sys.stderr.write(f"DataFrame columns: {df.columns.tolist()}\n")
|
55 |
+
sys.stderr.flush()
|
56 |
+
|
57 |
+
# Check if DataFrame is valid for leaderboard
|
58 |
+
if df is None:
|
59 |
+
sys.stderr.write("DataFrame is None, cannot create leaderboard\n")
|
60 |
+
sys.stderr.flush()
|
61 |
+
raise ValueError("DataFrame is None")
|
62 |
+
|
63 |
+
if df.empty:
|
64 |
+
sys.stderr.write("DataFrame is empty, creating minimal valid DataFrame\n")
|
65 |
+
sys.stderr.flush()
|
66 |
+
# Create a minimal valid DataFrame that won't crash the leaderboard
|
67 |
+
import pandas as pd
|
68 |
+
empty_df = pd.DataFrame(columns=COLS)
|
69 |
+
# Add one dummy row to prevent leaderboard component from crashing
|
70 |
+
dummy_row = {col: 0 if col in BENCHMARK_COLS or col == AutoEvalColumn.average.name else "" for col in COLS}
|
71 |
+
dummy_row[AutoEvalColumn.model.name] = "No models evaluated yet"
|
72 |
+
dummy_row[AutoEvalColumn.model_type_symbol.name] = "?"
|
73 |
+
empty_df = pd.DataFrame([dummy_row])
|
74 |
+
return init_leaderboard(empty_df)
|
75 |
+
|
76 |
+
sys.stderr.write("Creating leaderboard with valid DataFrame\n")
|
77 |
+
sys.stderr.flush()
|
78 |
+
return init_leaderboard(df)
|
79 |
+
|
80 |
except Exception as e:
|
81 |
+
error_msg = str(e)
|
82 |
+
traceback_str = traceback.format_exc()
|
83 |
+
sys.stderr.write(f"Error in refresh_leaderboard: {error_msg}\n")
|
84 |
+
sys.stderr.write(f"Traceback: {traceback_str}\n")
|
85 |
+
sys.stderr.flush()
|
86 |
+
raise
|
|
|
87 |
|
88 |
def run_perplexity_test(model_name, revision, precision):
|
89 |
"""Run perplexity evaluation on demand."""
|
90 |
+
import sys
|
91 |
+
import traceback
|
|
|
|
|
92 |
|
93 |
if not model_name:
|
94 |
return "Please enter a model name.", None
|
95 |
|
96 |
+
try:
|
97 |
+
# Use stderr for more reliable logging in HF Spaces
|
98 |
+
sys.stderr.write(f"\n=== Running Perplexity Test ===\n")
|
99 |
+
sys.stderr.write(f"Model: {model_name}\n")
|
100 |
+
sys.stderr.write(f"Revision: {revision}\n")
|
101 |
+
sys.stderr.write(f"Precision: {precision}\n")
|
102 |
+
sys.stderr.flush()
|
103 |
+
|
104 |
+
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
|
105 |
+
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
|
106 |
+
sys.stderr.flush()
|
107 |
+
|
108 |
+
if success:
|
109 |
+
try:
|
110 |
+
# Try to refresh leaderboard
|
111 |
+
sys.stderr.write("Attempting to refresh leaderboard...\n")
|
112 |
+
sys.stderr.flush()
|
113 |
+
|
114 |
+
new_leaderboard = refresh_leaderboard()
|
115 |
+
sys.stderr.write("Leaderboard refresh successful\n")
|
116 |
+
sys.stderr.flush()
|
117 |
+
|
118 |
+
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\nResults saved to leaderboard.", new_leaderboard
|
119 |
+
except Exception as refresh_error:
|
120 |
+
# If leaderboard refresh fails, still show success but don't update leaderboard
|
121 |
+
error_msg = str(refresh_error)
|
122 |
+
traceback_str = traceback.format_exc()
|
123 |
+
sys.stderr.write(f"Leaderboard refresh failed: {error_msg}\n")
|
124 |
+
sys.stderr.write(f"Traceback: {traceback_str}\n")
|
125 |
+
sys.stderr.flush()
|
126 |
+
|
127 |
+
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}\n\n⚠️ Results saved but leaderboard refresh failed: {error_msg}\n\nPlease refresh the page to see updated results.", None
|
128 |
+
else:
|
129 |
+
return f"❌ Evaluation failed: {result}", None
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
error_msg = str(e)
|
133 |
+
traceback_str = traceback.format_exc()
|
134 |
+
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
|
135 |
+
sys.stderr.write(f"Traceback: {traceback_str}\n")
|
136 |
+
sys.stderr.flush()
|
137 |
+
return f"❌ Critical error: {error_msg}", None
|
138 |
|
139 |
# Initialize results repository and directory
|
140 |
try:
|
|
|
181 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
182 |
|
183 |
with gr.TabItem("🧪 Test Model", elem_id="test-model-tab", id=2):
|
184 |
+
gr.Markdown("## Run Perplexity Test\n\nTest any Hugging Face model for perplexity evaluation.")
|
185 |
+
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
188 |
+
model_name = gr.Textbox(label="Model name", placeholder="openai-community/gpt2")
|
189 |
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
|
190 |
precision = gr.Dropdown(
|
191 |
choices=["float16", "bfloat16"],
|
192 |
label="Precision",
|
193 |
value="float16"
|
194 |
)
|
195 |
+
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
|
196 |
|
197 |
with gr.Column():
|
198 |
test_button = gr.Button("🚀 Run Perplexity Test", variant="primary")
|
199 |
result = gr.Markdown()
|
200 |
|
201 |
+
gr.Markdown("""
|
202 |
+
### Tips:
|
203 |
+
- Check stderr logs in HF Spaces for detailed debugging information
|
204 |
+
- If evaluation succeeds but leaderboard doesn't update, try refreshing the page
|
205 |
+
- Example models to test: `openai-community/gpt2`, `EleutherAI/gpt-neo-1.3B`
|
206 |
+
""")
|
207 |
+
|
208 |
test_button.click(
|
209 |
run_perplexity_test,
|
210 |
[model_name, revision, precision],
|
src/evaluation/dynamic_eval.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
from datetime import datetime
|
4 |
from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
|
5 |
from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
|
@@ -9,11 +10,20 @@ def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"
|
|
9 |
Run perplexity evaluation and save results.
|
10 |
"""
|
11 |
try:
|
|
|
|
|
|
|
12 |
# Run evaluation
|
|
|
|
|
13 |
perplexity_score = evaluate_perplexity(model_name, revision)
|
|
|
|
|
14 |
|
15 |
# Create result structure
|
16 |
result = create_perplexity_result(model_name, revision, precision, perplexity_score)
|
|
|
|
|
17 |
|
18 |
# Save result file
|
19 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
@@ -25,20 +35,39 @@ def run_dynamic_perplexity_eval(model_name, revision="main", precision="float16"
|
|
25 |
os.makedirs(result_dir, exist_ok=True)
|
26 |
|
27 |
result_path = os.path.join(result_dir, result_filename)
|
|
|
|
|
28 |
|
29 |
with open(result_path, "w") as f:
|
30 |
json.dump(result, f, indent=2)
|
31 |
|
|
|
|
|
|
|
32 |
# Upload to Hugging Face dataset
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
return True, perplexity_score
|
42 |
|
43 |
except Exception as e:
|
|
|
|
|
|
|
|
|
44 |
return False, str(e)
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
import sys
|
4 |
from datetime import datetime
|
5 |
from src.evaluation.perplexity_eval import evaluate_perplexity, create_perplexity_result
|
6 |
from src.envs import EVAL_RESULTS_PATH, API, RESULTS_REPO
|
|
|
10 |
Run perplexity evaluation and save results.
|
11 |
"""
|
12 |
try:
|
13 |
+
sys.stderr.write(f"Starting dynamic evaluation for {model_name}\n")
|
14 |
+
sys.stderr.flush()
|
15 |
+
|
16 |
# Run evaluation
|
17 |
+
sys.stderr.write("Running perplexity evaluation...\n")
|
18 |
+
sys.stderr.flush()
|
19 |
perplexity_score = evaluate_perplexity(model_name, revision)
|
20 |
+
sys.stderr.write(f"Perplexity evaluation completed: {perplexity_score}\n")
|
21 |
+
sys.stderr.flush()
|
22 |
|
23 |
# Create result structure
|
24 |
result = create_perplexity_result(model_name, revision, precision, perplexity_score)
|
25 |
+
sys.stderr.write(f"Created result structure: {result}\n")
|
26 |
+
sys.stderr.flush()
|
27 |
|
28 |
# Save result file
|
29 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
35 |
os.makedirs(result_dir, exist_ok=True)
|
36 |
|
37 |
result_path = os.path.join(result_dir, result_filename)
|
38 |
+
sys.stderr.write(f"Saving result to: {result_path}\n")
|
39 |
+
sys.stderr.flush()
|
40 |
|
41 |
with open(result_path, "w") as f:
|
42 |
json.dump(result, f, indent=2)
|
43 |
|
44 |
+
sys.stderr.write("Result file saved locally\n")
|
45 |
+
sys.stderr.flush()
|
46 |
+
|
47 |
# Upload to Hugging Face dataset
|
48 |
+
try:
|
49 |
+
sys.stderr.write(f"Uploading to HF dataset: {RESULTS_REPO}\n")
|
50 |
+
sys.stderr.flush()
|
51 |
+
|
52 |
+
API.upload_file(
|
53 |
+
path_or_fileobj=result_path,
|
54 |
+
path_in_repo=result_path.split("eval-results/")[1],
|
55 |
+
repo_id=RESULTS_REPO,
|
56 |
+
repo_type="dataset",
|
57 |
+
commit_message=f"Add perplexity results for {model_name}",
|
58 |
+
)
|
59 |
+
sys.stderr.write("Upload completed successfully\n")
|
60 |
+
sys.stderr.flush()
|
61 |
+
except Exception as upload_error:
|
62 |
+
sys.stderr.write(f"Upload failed: {upload_error}\n")
|
63 |
+
sys.stderr.flush()
|
64 |
+
# Don't fail the whole process if upload fails
|
65 |
|
66 |
return True, perplexity_score
|
67 |
|
68 |
except Exception as e:
|
69 |
+
import traceback
|
70 |
+
sys.stderr.write(f"Error in run_dynamic_perplexity_eval: {e}\n")
|
71 |
+
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
|
72 |
+
sys.stderr.flush()
|
73 |
return False, str(e)
|
src/evaluation/perplexity_eval.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import numpy as np
|
4 |
|
@@ -15,38 +16,72 @@ def evaluate_perplexity(model_name, revision="main", test_text=None):
|
|
15 |
float: Perplexity score (lower is better)
|
16 |
"""
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def create_perplexity_result(model_name, revision, precision, perplexity_score):
|
52 |
"""
|
|
|
1 |
import torch
|
2 |
+
import sys
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import numpy as np
|
5 |
|
|
|
16 |
float: Perplexity score (lower is better)
|
17 |
"""
|
18 |
|
19 |
+
try:
|
20 |
+
sys.stderr.write(f"Loading model: {model_name} (revision: {revision})\n")
|
21 |
+
sys.stderr.flush()
|
22 |
+
|
23 |
+
# Default test text if none provided
|
24 |
+
if test_text is None:
|
25 |
+
test_text = """Artificial intelligence has transformed the way we live and work, bringing both opportunities and challenges.
|
26 |
+
From autonomous vehicles to language models that can engage in human-like conversation, AI technologies are becoming increasingly
|
27 |
+
sophisticated. However, with this advancement comes the responsibility to ensure these systems are developed and deployed ethically,
|
28 |
+
with careful consideration for privacy, fairness, and transparency. The future of AI will likely depend on how well we balance innovation
|
29 |
+
with these important social considerations."""
|
30 |
+
|
31 |
+
sys.stderr.write("Loading tokenizer...\n")
|
32 |
+
sys.stderr.flush()
|
33 |
+
# Load tokenizer first
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision)
|
35 |
+
sys.stderr.write("Tokenizer loaded successfully\n")
|
36 |
+
sys.stderr.flush()
|
37 |
+
|
38 |
+
sys.stderr.write("Loading model...\n")
|
39 |
+
sys.stderr.flush()
|
40 |
+
# Load model
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
revision=revision,
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
device_map="auto"
|
46 |
+
)
|
47 |
+
sys.stderr.write("Model loaded successfully\n")
|
48 |
+
sys.stderr.flush()
|
49 |
+
|
50 |
+
sys.stderr.write("Tokenizing input text...\n")
|
51 |
+
sys.stderr.flush()
|
52 |
+
# Tokenize the text
|
53 |
+
inputs = tokenizer(test_text, return_tensors="pt")
|
54 |
+
sys.stderr.write(f"Tokenized input shape: {inputs['input_ids'].shape}\n")
|
55 |
+
sys.stderr.flush()
|
56 |
+
|
57 |
+
# Move to same device as model
|
58 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
59 |
+
sys.stderr.write(f"Moved inputs to device: {model.device}\n")
|
60 |
+
sys.stderr.flush()
|
61 |
+
|
62 |
+
sys.stderr.write("Running forward pass...\n")
|
63 |
+
sys.stderr.flush()
|
64 |
+
# Calculate loss
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
67 |
+
loss = outputs.loss
|
68 |
+
|
69 |
+
sys.stderr.write(f"Calculated loss: {loss.item()}\n")
|
70 |
+
sys.stderr.flush()
|
71 |
+
|
72 |
+
# Calculate perplexity
|
73 |
+
perplexity = torch.exp(loss).item()
|
74 |
+
sys.stderr.write(f"Final perplexity: {perplexity}\n")
|
75 |
+
sys.stderr.flush()
|
76 |
+
|
77 |
+
return perplexity
|
78 |
+
|
79 |
+
except Exception as e:
|
80 |
+
import traceback
|
81 |
+
sys.stderr.write(f"Error in evaluate_perplexity: {e}\n")
|
82 |
+
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
|
83 |
+
sys.stderr.flush()
|
84 |
+
raise
|
85 |
|
86 |
def create_perplexity_result(model_name, revision, precision, perplexity_score):
|
87 |
"""
|
src/leaderboard/read_evals.py
CHANGED
@@ -76,8 +76,11 @@ class EvalResult:
|
|
76 |
|
77 |
def to_dict(self):
|
78 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
# Calculate average, handling perplexity (lower is better)
|
83 |
scores = []
|
@@ -93,7 +96,8 @@ class EvalResult:
|
|
93 |
scores.append(score)
|
94 |
|
95 |
average = sum(scores) / len(scores) if scores else 0
|
96 |
-
|
|
|
97 |
|
98 |
data_dict = {
|
99 |
"eval_name": self.eval_name, # not a column, just a save name,
|
@@ -115,17 +119,24 @@ class EvalResult:
|
|
115 |
# Add perplexity score with the exact column name from Tasks
|
116 |
if perplexity_score is not None:
|
117 |
data_dict[Tasks.task0.value.col_name] = perplexity_score
|
118 |
-
|
|
|
119 |
else:
|
120 |
data_dict[Tasks.task0.value.col_name] = None
|
121 |
-
|
|
|
122 |
|
123 |
-
|
|
|
124 |
return data_dict
|
125 |
|
126 |
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
127 |
"""From the path of the results folder root, extract all perplexity results"""
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
model_result_filepaths = []
|
130 |
|
131 |
for root, _, files in os.walk(results_path):
|
@@ -136,39 +147,55 @@ def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
|
136 |
for file in files:
|
137 |
model_result_filepaths.append(os.path.join(root, file))
|
138 |
|
139 |
-
|
|
|
140 |
|
141 |
eval_results = {}
|
142 |
for model_result_filepath in model_result_filepaths:
|
143 |
try:
|
144 |
-
|
|
|
145 |
# Creation of result
|
146 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
147 |
-
|
|
|
148 |
|
149 |
# Store results of same eval together
|
150 |
eval_name = eval_result.eval_name
|
151 |
if eval_name in eval_results.keys():
|
152 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
153 |
-
|
|
|
154 |
else:
|
155 |
eval_results[eval_name] = eval_result
|
156 |
-
|
|
|
157 |
except Exception as e:
|
158 |
-
|
|
|
|
|
|
|
159 |
continue
|
160 |
|
161 |
results = []
|
162 |
-
|
|
|
|
|
163 |
for v in eval_results.values():
|
164 |
try:
|
165 |
-
|
|
|
166 |
v.to_dict() # we test if the dict version is complete
|
167 |
results.append(v)
|
168 |
-
|
|
|
169 |
except KeyError as e:
|
170 |
-
|
|
|
|
|
|
|
171 |
continue
|
172 |
|
173 |
-
|
|
|
174 |
return results
|
|
|
76 |
|
77 |
def to_dict(self):
|
78 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
79 |
+
import sys
|
80 |
+
|
81 |
+
sys.stderr.write(f"\nProcessing result for model: {self.full_model}\n")
|
82 |
+
sys.stderr.write(f"Raw results: {self.results}\n")
|
83 |
+
sys.stderr.flush()
|
84 |
|
85 |
# Calculate average, handling perplexity (lower is better)
|
86 |
scores = []
|
|
|
96 |
scores.append(score)
|
97 |
|
98 |
average = sum(scores) / len(scores) if scores else 0
|
99 |
+
sys.stderr.write(f"Calculated average score: {average}\n")
|
100 |
+
sys.stderr.flush()
|
101 |
|
102 |
data_dict = {
|
103 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
119 |
# Add perplexity score with the exact column name from Tasks
|
120 |
if perplexity_score is not None:
|
121 |
data_dict[Tasks.task0.value.col_name] = perplexity_score
|
122 |
+
sys.stderr.write(f"Added perplexity score {perplexity_score} under column {Tasks.task0.value.col_name}\n")
|
123 |
+
sys.stderr.flush()
|
124 |
else:
|
125 |
data_dict[Tasks.task0.value.col_name] = None
|
126 |
+
sys.stderr.write(f"No perplexity score found for column {Tasks.task0.value.col_name}\n")
|
127 |
+
sys.stderr.flush()
|
128 |
|
129 |
+
sys.stderr.write(f"Final data dict keys: {list(data_dict.keys())}\n")
|
130 |
+
sys.stderr.flush()
|
131 |
return data_dict
|
132 |
|
133 |
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
134 |
"""From the path of the results folder root, extract all perplexity results"""
|
135 |
+
import sys
|
136 |
+
|
137 |
+
sys.stderr.write(f"\nSearching for result files in: {results_path}\n")
|
138 |
+
sys.stderr.flush()
|
139 |
+
|
140 |
model_result_filepaths = []
|
141 |
|
142 |
for root, _, files in os.walk(results_path):
|
|
|
147 |
for file in files:
|
148 |
model_result_filepaths.append(os.path.join(root, file))
|
149 |
|
150 |
+
sys.stderr.write(f"Found {len(model_result_filepaths)} result files\n")
|
151 |
+
sys.stderr.flush()
|
152 |
|
153 |
eval_results = {}
|
154 |
for model_result_filepath in model_result_filepaths:
|
155 |
try:
|
156 |
+
sys.stderr.write(f"\nProcessing file: {model_result_filepath}\n")
|
157 |
+
sys.stderr.flush()
|
158 |
# Creation of result
|
159 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
160 |
+
sys.stderr.write(f"Created result object for: {eval_result.full_model}\n")
|
161 |
+
sys.stderr.flush()
|
162 |
|
163 |
# Store results of same eval together
|
164 |
eval_name = eval_result.eval_name
|
165 |
if eval_name in eval_results.keys():
|
166 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
167 |
+
sys.stderr.write(f"Updated existing result for {eval_name}\n")
|
168 |
+
sys.stderr.flush()
|
169 |
else:
|
170 |
eval_results[eval_name] = eval_result
|
171 |
+
sys.stderr.write(f"Added new result for {eval_name}\n")
|
172 |
+
sys.stderr.flush()
|
173 |
except Exception as e:
|
174 |
+
sys.stderr.write(f"Error processing result file {model_result_filepath}: {e}\n")
|
175 |
+
import traceback
|
176 |
+
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
|
177 |
+
sys.stderr.flush()
|
178 |
continue
|
179 |
|
180 |
results = []
|
181 |
+
sys.stderr.write(f"\nProcessing {len(eval_results)} evaluation results\n")
|
182 |
+
sys.stderr.flush()
|
183 |
+
|
184 |
for v in eval_results.values():
|
185 |
try:
|
186 |
+
sys.stderr.write(f"\nConverting result to dict for: {v.full_model}\n")
|
187 |
+
sys.stderr.flush()
|
188 |
v.to_dict() # we test if the dict version is complete
|
189 |
results.append(v)
|
190 |
+
sys.stderr.write("Successfully converted and added result\n")
|
191 |
+
sys.stderr.flush()
|
192 |
except KeyError as e:
|
193 |
+
sys.stderr.write(f"Error converting result to dict: {e}\n")
|
194 |
+
import traceback
|
195 |
+
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
|
196 |
+
sys.stderr.flush()
|
197 |
continue
|
198 |
|
199 |
+
sys.stderr.write(f"\nReturning {len(results)} processed results\n")
|
200 |
+
sys.stderr.flush()
|
201 |
return results
|
src/populate.py
CHANGED
@@ -1,60 +1,97 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
3 |
from src.display.utils import AutoEvalColumn
|
4 |
from src.leaderboard.read_evals import get_raw_eval_results
|
5 |
|
6 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
7 |
"""Creates a dataframe from all the individual experiment results"""
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
empty_df = pd.DataFrame(columns=cols)
|
50 |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
51 |
for col in benchmark_cols:
|
52 |
empty_df[col] = pd.Series(dtype=float)
|
53 |
return empty_df
|
54 |
-
|
55 |
-
# filter out if perplexity hasn't been evaluated
|
56 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
57 |
-
print("\nFinal DataFrame shape after filtering:", df.shape, flush=True)
|
58 |
-
print("Final columns:", df.columns.tolist(), flush=True)
|
59 |
-
|
60 |
-
return df
|
|
|
1 |
import pandas as pd
|
2 |
+
import sys
|
3 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
4 |
from src.display.utils import AutoEvalColumn
|
5 |
from src.leaderboard.read_evals import get_raw_eval_results
|
6 |
|
7 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
8 |
"""Creates a dataframe from all the individual experiment results"""
|
9 |
+
try:
|
10 |
+
sys.stderr.write("\n=== Starting leaderboard creation ===\n")
|
11 |
+
sys.stderr.write(f"Looking for results in: {results_path}\n")
|
12 |
+
sys.stderr.write(f"Expected columns: {cols}\n")
|
13 |
+
sys.stderr.write(f"Benchmark columns: {benchmark_cols}\n")
|
14 |
+
sys.stderr.flush()
|
15 |
|
16 |
+
raw_data = get_raw_eval_results(results_path)
|
17 |
+
sys.stderr.write(f"\nFound {len(raw_data)} raw results\n")
|
18 |
+
sys.stderr.flush()
|
19 |
|
20 |
+
all_data_json = []
|
21 |
+
for i, v in enumerate(raw_data):
|
22 |
+
try:
|
23 |
+
data_dict = v.to_dict()
|
24 |
+
all_data_json.append(data_dict)
|
25 |
+
sys.stderr.write(f"Successfully processed result {i+1}/{len(raw_data)}: {v.full_model}\n")
|
26 |
+
sys.stderr.flush()
|
27 |
+
except Exception as e:
|
28 |
+
sys.stderr.write(f"Error processing result {i+1}/{len(raw_data)} ({v.full_model}): {e}\n")
|
29 |
+
sys.stderr.flush()
|
30 |
+
continue
|
31 |
+
|
32 |
+
sys.stderr.write(f"\nConverted to {len(all_data_json)} JSON records\n")
|
33 |
+
sys.stderr.flush()
|
34 |
+
|
35 |
+
if all_data_json:
|
36 |
+
sys.stderr.write("Sample record keys: " + str(list(all_data_json[0].keys())) + "\n")
|
37 |
+
sys.stderr.flush()
|
38 |
|
39 |
+
if not all_data_json:
|
40 |
+
sys.stderr.write("\nNo data found, creating empty DataFrame\n")
|
41 |
+
sys.stderr.flush()
|
42 |
+
empty_df = pd.DataFrame(columns=cols)
|
43 |
+
# Ensure correct column types
|
44 |
+
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
45 |
+
for col in benchmark_cols:
|
46 |
+
empty_df[col] = pd.Series(dtype=float)
|
47 |
+
return empty_df
|
48 |
|
49 |
+
df = pd.DataFrame.from_records(all_data_json)
|
50 |
+
sys.stderr.write("\nCreated DataFrame with columns: " + str(df.columns.tolist()) + "\n")
|
51 |
+
sys.stderr.write("DataFrame shape: " + str(df.shape) + "\n")
|
52 |
+
sys.stderr.flush()
|
53 |
|
54 |
+
try:
|
55 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
56 |
+
sys.stderr.write("\nSorted DataFrame by average\n")
|
57 |
+
sys.stderr.flush()
|
58 |
+
except KeyError as e:
|
59 |
+
sys.stderr.write(f"\nError sorting DataFrame: {e}\n")
|
60 |
+
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
|
61 |
+
sys.stderr.flush()
|
62 |
|
63 |
+
try:
|
64 |
+
df = df[cols].round(decimals=2)
|
65 |
+
sys.stderr.write("\nSelected and rounded columns\n")
|
66 |
+
sys.stderr.flush()
|
67 |
+
except KeyError as e:
|
68 |
+
sys.stderr.write(f"\nError selecting columns: {e}\n")
|
69 |
+
sys.stderr.write("Requested columns: " + str(cols) + "\n")
|
70 |
+
sys.stderr.write("Available columns: " + str(df.columns.tolist()) + "\n")
|
71 |
+
sys.stderr.flush()
|
72 |
+
# Create empty DataFrame with correct structure
|
73 |
+
empty_df = pd.DataFrame(columns=cols)
|
74 |
+
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
75 |
+
for col in benchmark_cols:
|
76 |
+
empty_df[col] = pd.Series(dtype=float)
|
77 |
+
return empty_df
|
78 |
+
|
79 |
+
# filter out if perplexity hasn't been evaluated
|
80 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
81 |
+
sys.stderr.write("\nFinal DataFrame shape after filtering: " + str(df.shape) + "\n")
|
82 |
+
sys.stderr.write("Final columns: " + str(df.columns.tolist()) + "\n")
|
83 |
+
sys.stderr.flush()
|
84 |
+
|
85 |
+
return df
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
sys.stderr.write(f"\nCritical error in get_leaderboard_df: {e}\n")
|
89 |
+
import traceback
|
90 |
+
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
|
91 |
+
sys.stderr.flush()
|
92 |
+
# Return empty DataFrame as fallback
|
93 |
empty_df = pd.DataFrame(columns=cols)
|
94 |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
95 |
for col in benchmark_cols:
|
96 |
empty_df[col] = pd.Series(dtype=float)
|
97 |
return empty_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|